bib2gls: a command line Java
application to convert .bib files to
glossaries-extra.sty resource files

Nicola Talbot
dickimaw-books.com

Version 4.6 2025-07-27

The bib2gls command line application can be used to extract glossary infor-
mation stored in a .bib file and convert it into glossary entry definitions that
can be read using glossaries-extra’s \GlsXtrLoadResources command. When
used in combination with the record package option, bib2gls can select only
those entries that have been used in the document, as well as any dependent
entries, which reduces the TgX resources required by not defining unnecessary
commands.

Since bib2gls can also sort and collate the recorded locations present in the
.aux file, it can simultaneously by-pass the need to use makeindex or xindy,
although bib2gls can be used together with an external indexing application if
required. (For example, if a custom xindy rule is needed.)

An additional build may be required to ensure the locations are up-to-date
as the page-breaking may be slightly different on the first KIgX run due to the
unknown references being replaced with ?? which can be significantly shorter
than the actual text produced when the reference is known.

Note that bib2gls is a Java application, and requires at least Java 8. Addition-
ally, glossaries-extra must be at least version 1.12. These are minimum require-
ments, but the latest versions are recommended. This application was developed
in response to the question “Is there a program for managing glossary tags?” on
TEX on StackExchange [18]. The .bib file can be managed in an application such
as JabRef.

If you already have a .tex file containing entry definitions using commands
like \newglossaryentry then you can use the supplementary tool convert-
gls2bib to convert the entries to the .bib format required by bib2gls. See
section 7.2 for further details.

https://www.dickimaw-books.com/
http://tex.stackexchange.com/q/342544

The supplementary file “glossaries-extra and bib2gls: An Introductory Guide”
(bib2gls-begin.pdf) is an introductory guide to the glossaries-extra package,
which you may prefer to start with if you are unfamiliar with the glossaries and
glossaries-extra packages.

Additional resources:
« bib2gls gallery.
+ bib2gls FAQ
TUGboat articles:
+ Glossaries with bib2gls, issue 40:1, 2019.
« bib2gls: selection, cross-references and locations, issue 41:3, 2020.

« bib2gls: sorting, issue 42:2, 2021.

https://www.dickimaw-books.com/gallery/#bib2gls
https://www.dickimaw-books.com/faq.php?category=bib2gls
http://tug.org/TUGboat/tb40-1/tb124talbot-bib2gls.pdf
http://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
http://tug.org/TUGboat/Contents/contents42-2.html

Contents

Glossary
1 Introduction
1.1 Default Encoding
1.2 ExampleUse
1.3 Logical Divisions: type vs groupvsparent
1.4 DefiningaNew Glossary
1.5 Resource Sets
1.6 Dbib2glsQuarks
1.7 Indexing
1.8 Security
1.9 Localisation
1.10 Conditional Document Build oo
1.11 Manual Installation L o
2 TgX Parser Library
3 Command Line Options
31 Common Options e
——help(or-h)
—=version (O =V) i e e
—=Verbose e e
--no-verbose (or ——noverbose)
——quiet (O =q) . « « v o o
-—silent
--locale (lang) (or -1 (lang))
-=debug [(n)]
-—debug-mode (Setting)
--no-debug (or ——nodebug)
3.2 FileOptions
-—aux-input-action (setting)
--dir (dirname) (or -d (dirname))
--log-file (filename) (or -t (filename))
-—tex-encoding (name)
--log-encoding (name)
--default-encoding (name)
--date-in-header (or-D)

XXii

— AN W N =

17
18
19
20
20
21

24

3.3

34

3.5

3.6

Contents

--no—date-in-headero o oo oo 39
Interpreter Options L 39
——break-space e 39
--no-break-space 39
--custom-packages (list) 39
--datatool-sort-markerso o 40
--no-datatool-sort-markers L. 40
--ignore-packages (list) (or =k (list)) 41
-—interpret 41
--no—interpret 41
--list-known-packages oo 41
--packages (list) (or =p (list)) 42
--support-unicode-script oL o 0oL 42
--no—support-unicode-scripto Lo oL 42
--obey-aux-catcode L L 43
--no-obey-aux-catcode Lo oo 43
Record Options e 43
--—cite-as-record 43
--no-cite-as-record. oo 43
--collapse-same—-location-range, 43
--no-collapse-same-location-range 44
--map-format (map:value list) (or -m (map:value list)) 44
--merge-nameref-on (rule) 45
--merge-wrglossary-recordso 46
--no—merge-wrglossary-records 46
——record-count (Or =C) v ittt 47
--no-record-count Lo o L o 48
--record-count-unit (or-n) 48
--no-record-count-unit oL 48
--record-count-rule {rulefor -r{rule}) 48
--retain-formats (list) 49
--no-retain-formats Lo 49
Bib File Options e 49
--warn-non-bib-fields 00 L. 49
--no-warn-non-bib-fields 00 50
--warn-unknown-entry-types Lo 50
--no-warn-unknown-entry-types L. 50
Field Options e 50
—=group (OF =€) « « « v v i e e 50
TTROTETOUD « v . v e 54
--no—expand-fields o 54
-—expand-fields o 54
--mfirstuc-protection (list)|all (or —u (list)[all) 54
--no-mfirstuc-protection L oo 55

ii

Contents

--mfirstuc-math-protection. L. 55
--no-mfirstuc-math-protection 55
--nested-link-check (list)lnone 56
--no—nested-link-check 56
--shortcuts (value) 56
-—trim-fields L 56
——trim-only-fields (list) 57
-—trim-except-fields (list) 57
--no—trim-fields 57

3.7 OtherOptions 57
—--force-cross-resource-refs(Or-x) 57
--no-force-cross-resource-refs oL 58
—-provide—glossaries Lo oo 58
--no-provide-glossaries o oo 58
--replace—quotes e 58
--no-replace-quotes L oo 58

4 .bib Format 59
41 Encoding 59
42 Fields e 60
43 String Concatenation L L 68
44 Special Entry Types 68
Comments e 68
Preamble 69
Compound Entry Sets 69
Qcompoundset e e e 73

45 Glossary Entry Types 73
Standard Entry Types L 73
@string e 73
@preamble L e e 74
Single Entry Types 78
@entry e 79
Osymbol e 79
Onumber e 30
@index L e e 31
@indexplural L e e 81
@abbreviation L e 82
QacCronym o it i e e e e e e e e e e e 84
Qcontributor L e 34

Dual Entry Types e 85
Qdualentry e 91
@dualindexentry 93
O@dualindexabbreviation o L. 96
@dualindexsymbol e 97

1ii

Contents

@dualindexnumber L o 100
@dualabbreviationentry o oo 100
@dualentryabbreviationo Lo oL 102
@dualsymbol 102
@dualnumber e 103
@dualabbreviation o o o 103
@dualacronymo e e e e 108
Tertiary Entry Types o 108
Otertiaryindexabbreviationentry 109
Multi-Entry Types 110
@bibtexentry L e 110
Oprogenitor e 114
O@spawnindex e e e e e 117
O@spawnindexplural Lo e 117
@spawnentry e 117
O@spawnabbreviation L o oo 117
@SPawWwnacCIONYI v v v v v vt et e e e e e e e e e e e 117
@spawnsymbol Lo e 118
@spawnnumber 118
O@spawndualindexentry L L L oo 118

5 Resource File Options 119
5.1 String Concatenation 123
Element Quarks 124
FieldReference 130

5.2 Complex Conditionals 131
53 General Options e 136
charset=(encoding-name) 136
locale=(langtag) o i 136
wordify-math-greek=(boolean) 136
wordify-math-symbol=(boolean) 136
interpret-preamble=(boolean) 137
write-preamble=(boolean) 137
set-widest=(boolean) 137
entry-type-aliases=(key=valuelist) 138
unknown-entry-alias=(value) 140
action=(value) 140
copy-to-glossary=(list) 142
copy-to-glossary-missing-field-action=(value) 144

54 SelectionOptions 145
sre=(list) . .. 145
selection=(value) 145
match=(key=value list) 148
match-op=(value) 150

iv

55

5.6

5.7

Contents

not-match=(key=value list) 150
match-action=(value) 150
limit=(number) 150
Hierarchical Options 151
save-child-count=(boolean) 151
save-sibling-count=(boolean) 153
save-root-ancestor=(boolean) 153
flatten=(boolean) 153
flatten-lonely=(value) 153
flatten-lonely-rule={value) 160
flatten-lonely-condition=(value) 161
flatten-lonely-missing-field-action=(value) 161
strip-missing-parents=(boolean) 161
missing-parents=(value) 162
missing-parent-category=(value) 163
group-level=(value) 163
merge-small-groups=(n)t i 164
Master Documents 165
master=(name) 167
master-resources=({list) 169
Field and Label Options 169
Entry Labels 169
interpret-label-fields=(boolean) 169
labelify=(list) 170
labelify-list=(list) 171
labelify-replace={list) v 172
label-prefix=(tag) v o i i 173
duplicate-label-suffix=(value) 174
record-label-prefix=(tag) 175
cs-label-prefix={tag) 175
ext-prefixes=(list) 176
prefix-only-existing=(boolean) 178
dependency-fields=(list) 178
Special Fields 181
save-original-id=(value) 181
save-original-id-action=(value) 181
save-definition-index=(boolean) 181
save-use-index=(boolean) 182
save-from-see=(value) 182
save-from-seealso=(value) 182
save-from-alias=(value) 183
save-crossref-tail=(value) 183
save-original-entrytype=(value) 183
save-original-entrytype-action=(value) 184

Contents

gather-parsed-dependencies=(value) 184
Assignments L 184
group=(label) 184
category=(value) 185
type=(value) 186
ignored—type=(fype) 188
trigger—type=(type) 138
progenitor-type=(type) 189
progeny-type=(type) 189
adopted-parent-field=(fype) 189
ignore-fields=(list) 189
omit-fields=(list) 190
omit-fields-missing-field-action={(value)} 192
field-aliases=(key=valuelist) 192
replicate-fields=(key=valuelist) 193
replicate-override={(boolean)} 194
replicate-missing-field-action={{value)} 194
assign-fields=(key=valuelist) 195
assign-override={(boolean)} 200
assign-missing-field-action={(value)} 200
counter=(value) 200
copy-action-group-field=(value) 201
copy-alias—to-see=(boolean) 201
Field Adjustments 201
post-description-dot=(value) 201
post-description-dot-exclude=(value) 202
strip-trailing-nopost=(boolean) 202
check-end-punctuation={list) 203
sort-label-list=(list) 204
prune-xr=(boolean) 210
prune-see-match=(key=value list) 210
prune-see-op=(value) 213
prune-seealso-match=(key=valuelist) 213
prune-seealso-op=(value) 213
prune-iterations=(number) 213
bibtex-contributor-fields=(list) 213
contributor-order=(value) 214
encapsulate-fields={(key=value list)} 215
encapsulate-fields*={(key=valuelist)} 215
format-integer-fields={(key=valuelist)} 216
format-decimal-fields={(key=valuelist)} 216
interpret-fields={{list)} 217
interpret-fields-action={(value)} 218
hex-unicode-fields={{list)} 219

Vi

5.8

5.9

5.10

Contents

date-time-fields=(list) 219
date-fields=(list) 219
time-fields=(list) 219
date-time-field-format=(value) 220
date-field-format=(value) 220
time-field-format=(value) 220
date-time-field-locale=(value) 220
date-field-locale=(value) 220
time-field-locale=(value) 220
Prefix Fields 220
prefix-fields=(list) 221
append-prefix-field=(value) 221
append-prefix-field-cs={(cs) 221
append-prefix-field-exceptions=(sequence) 221
append-prefix-field-cs-exceptions=(sequence) 222
append-prefix-field-nbsp-match=(pattern) 222
Case-Changing 222
no-case-change-cs=(list) 231
word-boundaries=(list) 231
short-case-change=(value) 231
long-case-change=(value) 232
name-case-change=(value) 232
description-case-change=(value) 232
field-case-change={(key=value list)} 232
Field Fallbacks 233
abbreviation-name-fallback=(field) 235
abbreviation-text-fallback=(field) 235
abbreviation-sort-fallback=(field) 235
entry-sort-fallback=(fleld) 236
symbol-sort-fallback=(fleld) 238
bibtexentry-sort-fallback={(field) 238
custom-sort-fallbacks={(key=value list)} 238
field-concat-sep=(value) 240
Plurals 241
short-plural-suffix=(value) 243
dual-short-plural-suffix=(value) 243
Location List Options 243
save-locations=(value) 247
save-loclist=(boolean) 248
save-primary-locations=(value) 248
save-principal-locations=(value) 248
primary-location-formats={list) 250
principal-location-formats=(list) 250
primary-loc-counters=(value) 254

vii

5.11

5.12

Contents

principal-loc-counters={value) 254
merge-ranges=(boolean) 257
min-loc-range=(value) 257
max-loc—diff=(value) 260
suffixF=(value) 260
suffixFF=(value) 260
compact-ranges=(value) 261
see=(value) 261
seealso=(value) 262
alias=(value) 262
alias-loc=(value) 262
loc—prefix=(value) 262
loc-prefix—def=(value) 264
loc—suffix=(value) 264
loc-suffix—def=(value) 264
loc—counters=(list) 265
save-index-counter=(value) L. .. 266
Supplemental Locations oo L. 269
supplemental-locations=(basename) 271
supplemental-selection=(value) 273
supplemental-category=(value) 274
Sorting L e 275
sort=(value) 277

NoSortField 277

Alphabet 282

Letter NonLocale) 283

Letter-Number 284

Numerical oo 288

Date-Time 289
shuffle=(seed) 290
sort-field=(fleld) 290
missing-sort-fallback=(field) 291
trim-sort=(boolean) 292
sort-replace=(list) 292
sort-rule=(value) 293
break-at=(0option) 296
break-marker=(marker) 297
break-at-match=(key=valuelist) 297
break-at-match-op=(value) 297
break-at-not-match=(key=valuelist) 298
sort-number-pad=(number) 298
sort-pad-plus=(marker) 298
sort-pad-minus=(marker) 298
identical-sort-action=(value) 298

viil

5.13

Contents

sort-suffix=(value) 299
sort-suffix-marker=(value) 304
encapsulate-sort={csname}, 304
strength=(value) 304
decomposition=(value) 305
letter-number-rule=(value) 305
letter-number-punc-rule=(value) 306
numeric-sort-pattern=(value) 308
numeric-locale=(value) 308
date-sort-locale=(value) 308
date-sort-format=(value) 309
group-formation=(value) 311
Secondary Glossary 311
secondary=(value) 311
secondary-match=(key=value list) 314
secondary-not-match=(key=value list) 314
secondary-match-op=(value) 314
secondary-match-action=(value) 314
secondary-missing-sort-fallback={field) 314
secondary-trim-sort=(boolean) 315
secondary-sort-replace={list) 315
secondary-sort-rule=(value) 315
secondary-break-at=(value) 315
secondary-break-marker=(marker) 315
secondary-break-at-match=(key=value list) 315
secondary-break-at-match-op=(value) 315
secondary-break-at-not-match=(key=value list) 315
secondary-sort-number-pad=(number) 315
secondary-sort-pad-plus=(marker) 315
secondary-sort-pad-minus=(marker) 315
secondary-identical-sort-action=(value) 316
secondary-sort-suffix=(value) 316
secondary-sort-suffix-marker=(value) 316
secondary-strength=(value), 316
secondary-decomposition=(value) 316
secondary-letter-number-rule=(value) 316
secondary-letter-number-punc-rule={value) 316
secondary-numeric-sort-pattern=(value) 316
secondary-numeric-locale=({value) 316
secondary-date-sort-locale=(value) 316
secondary-date-sort-format=(value) 316
secondary-group-formation=(value) 317

ix

Contents

514 DualEntries 317
General Dual Settings 317
dual-prefix=(value) 317
primary-dual-dependency=(boolean) 317
combine-dual-locations=(value) 317
DualFields 319
dual-type=(value) 319
dual-category=(value) 320
dual-counter=(value) 321
dual-short-case-change=(value) 321
dual-long-case-change=(value) 321
dual-field=(value) 321
dual-date-time-field-format=(value) 322
dual-date-field-format=(value) 322
dual-time-field-format=(value) 322
dual-date-time-field-locale=(value) 322
dual-date-field-locale=(value) 322
date-time-field-locale=(value) 322
Dual Sorting 322
dual-sort=(value) 322
dual-sort-field=(field) 323
dual-missing-sort-fallback=(field) 323
dual-trim-sort=(boolean) 323
dual-sort-replace=(list) 323
dual-sort-rule=(value) 323
dual-break-at=(value) 323
dual-break-marker=(marker) 324
dual-break-at-match=(key=valuelist) 324
dual-break-at-match-op=(value) 324
dual-break-at-not-match=(key=valuelist) 324
dual-sort-number-pad=(number) 324
dual-sort-pad-plus=(marker) 324
dual-sort-pad-minus=(marker) 324
dual-identical-sort-action=(value) 324
dual-sort-suffix=(value) 324
dual-sort-suffix-marker=(value) 324
dual-strength=(value) 324
dual-decomposition=(value) 324
dual-letter-number-rule=({value) 325
dual-letter-number-punc-rule=(value) 325
dual-numeric-sort-pattern=(value) 325
dual-numeric-locale={value) 325
dual-date-sort-locale=(value) 325
dual-date-sort-format=(value) 325

Contents

dual-group-formation=(value) 325

Dual Mappings 325
dual-entry-map={{({list1)},{{list2)}} 325
dual-abbrv-map={{{list1)},{{list2)}} 326
dual-abbrventry-map={{(list1)}, {<ll$t2> 327
dual-symbol-map={{{list1)},{(list2)}} 327
dual-indexentry-map={{(list1)}, {(list2)}} 327
dual-indexsymbol-map={{(list1)},{(list2)}} 327
dual-indexabbrv-map={{(list])},{(list2)}} 328

Dual Back-Links 328
dual-entry-backlink={(boolean)} 328
dual-abbrv-backlink={(boolean)} 329
dual-symbol-backlink={(boolean)} 329
dual-abbrventry-backlink={(boolean)} 329
dual-entryabbrv-backlink={(boolean)} 330
dual-indexentry-backlink={(boolean)} 330
dual-indexsymbol-backlink={(boolean)} 330
dual-indexabbrv-backlink={(boolean)} 330
dual-backlink={(boolean)} 330

5.15 Tertiary Entries 330
tertiary-prefix={(value)} 330
tertiary—type={(value)} 330
tertiary-category={(value)} 331
5.16 Compound (Combined or Multi) Entries 331
compound-options-global={(boolean)} 331
compound-dependent={(boolean)} 331
compound-add-hierarchy={(boolean)} 331
compound-has-records={(boolean)} 332
compound-adjust-name={{value)}, 332
compound-main-type={(value)} 333
compound-other-type={(value)} 333
compound-type-override={(boolean)} 334
compound-write-def={(value)} 334
6 Provided Commands 335
6.1 Entry Definitions 335
\bibglsnewentry 335
\bibglsnewsymbol 336
\bibglsnewnumber 336
\bibglsnewindex 337
\bibglsnewindexplural, 337
\bibglsnewabbreviation 337
\bibglSnewacronym o vvii it 338
\bibglsnewdualentry 338

X1

6.2

6.3

Contents

\bibglsnewdualindexentry 338
\bibglsnewdualindexentrysecondary 338
\bibglsnewdualindexsymbol 339
\bibglsnewdualindexsymbolsecondary 339
\bibglsnewdualindexnumber 339
\bibglsnewdualindexnumbersecondary 339
\bibglsnewdualindexabbreviation 340
\bibglsnewdualindexabbreviationsecondary 340
\bibglsnewdualabbreviationentry 341
\bibglsnewdualabbreviationentrysecondary 341
\bibglsnewdualentryabbreviation 341
\bibglsnewdualentryabbreviationsecondary 342
\bibglsnewdualsymbol 342
\bibglsnewdualnumber 342
\bibglsnewdualabbreviation 343
\bibglsnewdualacronymt 343
\bibglsnewtertiaryindexabbreviationentry 343
\bibglsnewtertiaryindexabbreviationentrysecondary 344
\bibglsnewbibtexentry 344
\bibglsnewcontributor 344
\bibglsnewprogenitor 345
\bibglsnewspawnindex 345
\bibglsnewspawnedindex 345
\bibglsnewspawnindexplural 345
\bibglsnewspawnedindexplural 346
\bibglsnewspawnentry 346
\bibglsnewspawnedentry 346
\bibglsnewspawnabbreviation 346
\bibglsnewspawnedabbreviation 347
\bibglsnewspawnacronym oo 347
\bibglsnewspawnedacCronym« o oo v v v 347
\bibglsnewspawnsymbol 347
\bibglsnewspawnedsymbol 348
\bibglsnewspawnnumber 348
\bibglsnewspawnednumber 348
\bibglsnewspawndualindexentry 348
\bibglsnewspawndualindexentrysecondary 349
Compound Entry Sets 349
\bibglsdefcompoundset, 349
Location Lists and Cross-References 349
\bibglsSeesep o v it e e e 349
\bibglsseealSoSepo i i 350
\bibglsaliassep o v i i i 350
\bibglsuSesee i 350

xii

6.4

Contents

\bibglsuseseealso 350
\bibglsusealias ot v i i 350
\bibglsdelimN 350
\bibglslastDelimN 351
\bibglscompact i i 351
\bibglspassim 351
\bibglspasSimname oottt 351
\bibglsrange e 352
\bibglsinterloper 352
\bibglspostlocprefix 352
\bibglslocprefix 353
\bibglspagenamettt 354
\bibglspagesnameottt 354
\bibglslocsuffix 354
\bibglslocationgroup o v v v vttt 354
\bibglslocationgroupsep « ¢ v v v it 355
\bibglsprimary 356
\bibglsprimarylocationgroup 356
\bibglsprimarylocationgroupsep« c v v v o 356
\bibglssupplemental 357
\bibglssupplementalsublist 357
\bibglssupplementalsep, 357
\bibglssupplementalsubsep 358
\bibglshrefchar 358
\bibglshrefunicode 358
\bibglshexunicodechar 358
Letter Groups e 358
\bibglssetlastgrouptitle 360
\bibglshypergroup 361
Top-Level GroupsOnly 361
\bibglssetlettergrouptitle 362
\bibglslettergroup 362
\bibglslettergrouptitle 363
\bibglssetothergrouptitle 364
\bibglsothergroup 365
\bibglsothergrouptitle 365
\bibglssetemptygrouptitle 365
\bibglSemptygroup v v 365
\bibglsemptygrouptitle 365
\bibglssetnumbergrouptitle 365
\bibglsnumbergroup 366
\bibglsnumbergrouptitle 366
\bibglssetdatetimegrouptitle 366
\bibglsdatetimegroup 366

xiii

Contents

\bibglsdatetimegrouptitle, 367
\bibglssetdategrouptitle 367
\bibglsdategroup 367
\bibglsdategrouptitle 367
\bibglssettimegrouptitle 368
\bibglstimegroup 368
\bibglstimegrouptitle 368
\bibglssetunicodegrouptitle 368
\bibglsunicodegroup 368
\bibglsunicodegrouptitle 369
\bibglssetmergedgrouptitle 370
\bibglsmergedgroup ottt 370
\bibglsmergedgrouptitle 370
\bibglsmergedgroupfmt 370
Hierarchical Groups 371
\bibglsgrouplevel 371
\bibglshiersubgrouptitle 371
\bibglssetlettergrouptitlehier 371
\bibglslettergrouphier 372
\bibglslettergrouptitlehier 372
\bibglssetothergrouptitlehier 372
\bibglsothergrouphier 372
\bibglsothergrouptitlehier 372
\bibglssetemptygrouptitlehier 373
\bibglsemptygrouphier 373
\bibglsemptygrouptitlehier 373
\bibglssetnumbergrouptitlehier 373
\bibglsnumbergrouphier 373
\bibglsnumbergrouptitlehier 373
\bibglssetdatetimegrouptitlehier 374
\bibglsdatetimegrouphier, 374
\bibglsdatetimegrouphierfinalargs 374
\bibglsdatetimegrouptitlehier 374
\bibglsdatetimegrouptitlehierfinalargs. 375
\bibglssetdategrouptitlehier 375
\bibglsdategrouphier 375
\bibglsdategrouptitlehier 375
\bibglssettimegrouptitlehier 375
\bibglstimegrouphier 376
\bibglstimegrouptitlehier 376
\bibglssetunicodegrouptitlehier 376
\bibglsunicodegrouphier 376
\bibglsunicodegrouptitlehier 376
\bibglssetmergedgrouptitlehier 377

Xiv

6.5

6.6

Contents

\bibglsmergedgrouphier 377

\bibglsmergedgrouptitlehier 377

\bibglsmergedgrouphierfmt 377
Flattened Entries L 378
\bibglsflattenedhomograph 378
\bibglsflattenedchildpresort 379
\bibglsflattenedchildpostsort 380
Other e 380
\bibglscopytogloSSary vt ittt 380
\bibglssettotalrecordcount 380
\bibglssetrecordcount, 381
\bibglssetlocationrecordcount 381
\bibglshyperlink vttt 381
\bibglssetwidest 381
\bibglssetwidestfortype 382
\bibglssetwidestfallback 382
\bibglssetwidestfortypefallback 382
\bibglssetwidesttoplevelfallback 383
\bibglssetwidesttoplevelfortypefallback 383
\bibglscontributorlist 383
\bibglscontributor 384
\bibglsdatetime 384
\bibglsdate 384
\bibglstime 384
\bibglsprimaryprefixlabel 385
\bibglsdualprefixlabel 385
\bibglstertiaryprefixlabel 385
\bibglsexternalprefixlabel 385
\bibglshashchar 385
\bibglsunderscorechar 385
\bibglsdollarchar 386
\bibglsampersandchar 386
\bibglscircumchar 386
\bibglsaposchar 386
\bibglsdoublequotechar 386
\bibglSUppPercase o v v vt e e e e e e e e 386
\bibglslowercaseo v v i 386
\bibglstitlecase it i 387
\bibglsfirstuc 387
\BibGlsNoCaseChange o v vt v i it ittt 387
\bibglsdefinitionindex 387
\bibglsuseindex 387

XV

Contents

7 Converting Existing .tex to .bib 388
7.1 Shared Conversion Tool Switches 389
-—texenc (encoding) 389
--bibenc (encoding) 389
--space-sub (replacement) (or -s (replacement)) 389
——preamble-only (Or =pP) i 389
--no-preamble-only o o 389
—-overwrite 389
-—no-overwrite 389
--ignore-fields (list) (or —f (list)) 390
--no-ignore-fields oL 390
--field-map (src=dest list) (or -m (src=dest list)) 390
--no—field-map 390
-—field-case (Setting) 390
—-index-conversion (or—i) 390
—-no—index—Conversionol 390
--log-file (filename) (or -t (filename)) 391
7.2 convertgls2bib: Conversion from glossaries or glossaries-extra 391
7.2.1 Command Line Arguments 391
-—ignore—-sort 391
--no-ignore-sort Lo oo 391
-—ignore-type e 392
--no-ignore-type o ool 392
--ignore-category Lo oL 392
--no-ignore-category 392
--split-on-type(or-t) 392
--no-split-on-type oL 392
--split-on-category (Or—=c) 393
--no-split-on-category 393
-—absorb-see 393
--no-absorb-see o oo 393
--internal-field-map (src=dest list) 393

7.2.2 Recognised Commands, 394
\glsexpandfields 394
\glsnoexpandfields 395
\glssetexpandfield 395
\glssetnoexpandfield 395
\loadglsentries 395
\newglosSsaryentryttt 395
\provideglossaryentry 396
\longnewglossaryentryo v i 396
\longprovideglossaryentry 396
\Dewterm 397
\newabbreviation L. 398

XVi

Contents

\DEWaCTONYMt vttt 398
\glsxtrnewsymbol 398
\glsxtrnewnumber 399
\newdualentry 399
7.3 datatool2bib: Conversion from datatool 401
7.3.1 Command Line Arguments 402
--label (column-key) (or -L (column-key)) 403
——auto-label (Or-a) e 403
--no-auto-label 0000 403
-—auto-label-prefix (prefix) 403
--read (options) (or —r (options)) 403
—=setup (OpHons) 403
-—save-datum o 404
--no-save-datum oo 405
--save-value (suffix) 405
--no-save-value L Lo 405
--save-currency (suffix) 405
——NO—SAVE~—CUXTENCY« v v v v v ettt e et e 405
——split . .. 405
--no-split 405
-—detect-symbols o o000 405
--no-detect-symbols L. 406
--numeric-locale (lang-tag) 406
-—adjust-gls 406
--no—adjust-gls 406
--dependency-field (field) 406
--no-dependency-field oo 406
——strip . ..o 407
-——no-strip. 407
-—strip-glsadd Lo 407
-—no-strip-glsadd oo 407
--strip-acronym-font 0. 407
--no-strip-acronym-font 407
--strip-case-change 407
--no-strip-case-change L. 407
7.3.2 Recognised Commands 408
ADTLSELUD . .« .« v o v v o e e e e e e e 408
\DTLread 408
\dtlexpandnewvalueot v i 408
\dtlnoexpandnewvalue, 408
\DTLnewdb e 409
ADTLIEWIOW .+ . o v v v e e e e e e e e e e e e e e e 409
\DTLnewdbentry 409
\DTLaction it i 410

XVii

Contents

\newgidx (datagidx) 411

\newterm (datagidx) 411

\newacro (datagidx) 411
Examples 412
no-interpret-preamble.bib.o oo oL 412
interpret-preamble.bib Lo 413
interpret-preamble2.bib oo o oo 413
constants.bib L L L L 414
chemicalformula.bib o oo oo 417
bacteria.bib 421
baseunits.bib L 423
derivedunits.bibo oo oo 425
people.bib L 426
books.bib 432
films.bib 435
citations.bib L L 441
mathgreek.bib o oo 442
bigmathsymbols.bib. o oo 447
mathsrelations.bib. Lo oo 451
binaryoperators.bib Lo 453
unaryoperators.bib. 454
mathsobjects.bib Lo 455
miscsymbols.bib o 459
markuplanguages.bib oo oo oo 463
usergroups.bibo 465
animals.bib. L 470
minerals.bib 472
vegetables.bib L 474
terms.bib 476
topics.bib 477
sample-hierarchical.tex L . 477
sample-nested.tex L e 478
sample-constants.tex o oo 483
sample-chemical.tex L e 488
sample-bacteria.tex Lo L Lo 491
sample-unitsl.texo 495
sample-units2.tex L e 498
sample-units3.tex e 501
sample-media.tex e 506
sample-people.tex e 510
sample-authors.tex. L L 518
sample-citations.tex L o 522
sample-msymbols.tex L L L e 527

XViii

Contents

sample-maths.tex L L o 529
sample-textsymbols.tex L o Lo 534
sample-textsymbols2.tex e 537
sample-markuplanguages.tex L Lo oo 540
sample-usergroups.tex o e 544
sample-multil.tex e 552
sample-multi2.tex L 563
Package Option Summary 589
General Command Summary 595
Bibliography 673
Index 675

Xix

List of Tables

2.1 Glossary-Related Commands Implemented by the bib2gls Interpreter . .. 26
4.1 Fields Provided by glossaries-extra 62
4.2 Fields Provided by bib2gls 63
4.3 Fields Provided by glossaries-prefix 63
4.4 Fields Provided by glossaries-accsupp L. 63
45 FieldsSetbybib2gls 64
4.6 Internal Fields Set by glossaries or glossaries-extra or bib2gls 66
47 Compound SetFields 66
5.1 Summary of Available Sort Options: No Sort Field 278
5.2 Summary of Available Sort Options: Alphabet 278
5.3 Summary of Available Sort Options: Letter (Non-Locale) 278
5.4 Summary of Available Sort Options: Letter-Number 278
5.5 Summary of Available Sort Options: Numerical 279
5.6 Summary of Available Sort Options: Date-Time 279

XX

List of Figures

5.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23

Regular letter comparison vs letter-number comparison 285
sample-hierarchical.pdf oL 479
sample-nested.pdf oo o 484
sample-constants.pdf L L L Lo 489
sample-chemical.pdf o oo 492
sample-bacteria.pdfo oo 496
sample-unitsl.pdf 499
sample-units2.pdf L o oo 502
sample-units3.pdf 506
sample-media.pdf L Lo 511
sample-people.pdf 519
sample-authors.pdf L oL 523
sample-citations.pdf oo o oo 527
sample-msymbols.pdf Lo o 530
sample-maths.pdf Lo 535
sample-textsymbols.pdfo oL 538
sample-textsymbols2.pdf L Lo 541
sample-markuplanguages.pdf Lo oL 545
sample-usergroups.pdf L L oo 553
sample-multil.pdf (pages1to4) 564
sample-multil.pdf (pages5to8) 565
sample-multi2.pdf (pages1to4) 586
sample-multi2.pdf (pages5to8) 587
sample-multi2.pdf (pages9and12) 588

XX1

Glossary

Ancestor

An entry’s parent or an ancestor of the parent. See section 5.5.

Anchored (Regular Expression)

An anchored regular expression must match the entire string, not a sub-string. For
example, 17op matches “lop” and “op” but doesn’t match “clop” or “cop”.

Child Entry

An entry in a hierarchical glossary that is linked to, but one level down from, its asso-
ciated parent entry. See section 5.5.

Compound (Combined or Multi) Entry

A compound entry corresponds to the \multiglossaryentry command. This defines
a label that represents a set of entries that have already been defined. This label can
then be used in commands like \mgls as a shortcut for using \gls for each element
in the set. The main label is the main element in the set. The “other labels” are all the
other (not-main) elements. See section 4.4.

Concatenation

This is where multiple fragments or substrings are joined together to form a single
value. The concatenation operator is # for . bib files (see section 4.3) and + for resource
option string concatenation (section 5.1).

Cross-reference Field
A field used for cross-referencing another entry: see, seealsoand alias. Other fields
can be identified as a list of dependent entry labels with dependency-fields.
Cross-resource Reference
A reference from a recorded entry provided in one resource set to an unrecorded entry
in another resource set. See section 1.5.
Definition Index

An index (starting from 0) that’s incremented every time a new entry object is created
within bib2gls. This relates to the order of definitions within the .bib files. Each
dual entry and spawned entry will increment the underlying counter but only when
they are created, which may not happen until after all .bib files for the resource set
have been parsed.

XX1i

Glossary

Discarded Record

A record that is discarded because either it is identical to another record or it conflicts
with another record.

Document Locale

Dual

Dual

the locale associated with the document language (or by --locale, if no document
language has been detected). In the case of a multi-lingual document, this is the locale
of the last language resource file to be loaded through tracklang’s interface. It’s best
to explicitly set the locale for multi-lingual documents to avoid confusion (either with
the locale or as a language tag in options such as sort).

Entry

The duplicate entry created from a dual-entry type (such as @dualentry). This dupli-
cate is based on the primary entry with modifications made according to various set-
tings. With tertiary entry types, the dual entry represents two entries: the secondary
and tertiary. See section 4.5.

List

The bib2gls list of dual entries, which is sorted according to the dual-sort resource
option. The entries may or may not be assigned to the same glossary, and the list may
only be a subset of entries. If dual-sort={combine} is used then all entries will be
in the main list and there won’t be a dual list.

Encoding

A text format that maps a byte or sequence of bytes to a character. See section 4.1 and
charset for the .bib file encoding, --tex-encoding for the .aux and .glstex file
encoding, and section 1.1 for the default encoding. See also the blog article Binary Files,
Text Files and File Encodings for further information about file encodings in general.

Entry Type

an entry’s identifying type, as specified by @entry-type. (Not to be confused with the
glossary label, which is identified by the type field.) When referenced in a resource
option, the leading @ is typically omitted. The original entry type refers to the entry
type as specified in the .bib file. The actual entry type may be different and will be the
result of a conversion via resource options such as entry-type-aliases. Although
the .bib format is case-insensitive, references to the entry type in resource options
should typically be in lower case.

Flat Glossary

A glossary that has no hierarchy. That is, there are no child entries. See section 5.5.

XX1ii

https://dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/
https://dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/

Glossary

Hierarchical Glossary
A glossary where the entries are ranked according to some classification. Level 0 indi-
cates top-level entries, level 1 indicates child entries that have a level 0 parent, level 2
indicates child entries that have a level 1 parent, and so on. See section 5.5.
Homograph
Each word in a set of words that all have the same spelling but different meanings. For
example, lead (to guide someone) and lead (metallic element) are homographs.
Identical Collator Strength
A collator strength value that indicates that all differences are considered significant
during comparison.
Ignored Glossary

A glossary defined with commands like \newignoredglossary. An ignored glossary
doesn’t have an associated title (so if one is required it needs to be explicitly set),
and isn’t picked up by iterative commands such as \printunsrtglossaries. See
section 1.4.

Ignored Record

A record with the format glsignore or glstriggerrecordformat. This record in-
dicates that the entry should be considered for selection with any of the “recorded”
selection options, but the record should not be added to the location list.

Java Locale
the default locale for the Java Runtime Environment (JRE), which usually matches the
operating system’s locale.

Location

The value of the indexing counter when an entry is recorded. By default, this is the page
counter. Each location has an associated format or encapsulating command (ENCAP),
which is the name of a formatting command that should be used to encapsulate the
location’s value in the location list. The default is glsnumberformat.

Location List

Formatted list of locations obtained from an entry’s records. This won’t include ig-
nored or discarded records, and a run of locations may be compressed into a range.
See section 5.10 and section 6.3.

Lonely Child Entry
A child entry that has no selected siblings. See section 5.5.

XX1V

Glossary

Main Document
The principal document that has its own glossary but the location lists may also contain
external locations obtained from a supplemental document.

Main Entry

The originating entry from which the spawned entries are created. A main entry may
be a dual-entry type, consisting of a primary entry and dual entry. (Not to be confused
with the main glossary or the main label of a compound entry.)

Main Glossary

The default glossary in the document identified by \glsdefaulttype (which will have
the label main unless nomain is used). If nomain is used then \glsdefaulttype will
be set to the label of the first glossary to be defined.

Main Label or Element (Compound Entry)

The main element in the set that defines a compound entry.

Main (or Primary) List

The bib2gls list of primary entries, which is sorted according to the sort resource
option. The entries may or may not be assigned to the same glossary, and the list may
only be a subset of entries. If dual-sort={combine} is used, then the main list will
also contain all the dual entries.

Master Document
A main or principal document that contains a glossary with entries referenced by
smaller documents that don’t have their own glossary. See section 5.6.

Multi-entry Type

An entry type that can spawn multiple primary entries. Some multi-entry types can
also spawn a dual entry. See section 4.5. For the glossaries-extra “multi (compound or
combined) entries” that are defined with \multiglossaryentry see compound entry.

Order of Use Index

The record index is a value (starting from 0) that’s incremented every time a record
is created while parsing the . aux file. The first time a non-ignored record is added to
a given entry, the record index is assigned to that entry’s order of use index. So the
index provides a relative order of use. So if entry1 is the first entry to be indexed, it
will have order of use index 0. If entry1 is then indexed twice more and then entry?2 is
indexed, then entry2’s order of use index will be 3.

Other Label or Element (Compound Entry)

The non-main elements in the set that defines a compound entry.

XXV

Glossary

Parent Entry
An entry in a hierarchical glossary that is linked to, but one level up from, its associated
child entry. See section 5.5.

Primary Collator Strength
A collator strength value that indicates only primary differences are considered signif-
icant during comparison. This is locale dependant, but typically different base letters
are considered a primary difference.

Primary Entry
The original entry created from a dual-entry type (such as @dualentry) or the entry
from single-entry types (such as @entry) or spawned entries.

Primary (or Principal) Glossary
A glossary that contains entries that have the type field set to that glossary’s label.
Note that a primary glossary may contain both primary and dual entries.

Principal (or Primary) Location

A special location (record) which indicates the principal or primary place in the doc-
ument where the entry is mentioned or discussed. The location is identified by the
principal or primary format (principal-location-formats).

Progenitor

The main entry for the @progenitor entry type.

Progeny
The spawned entries for the @progenitor entry type.

Record

Recording is bib2gls’s equivalent of indexing. When the record package option is
set, each time an entry is indexed in the document (using commands like \gls or
\glstext) a record is added to the .aux file that makes a note of the entry label, the
location, the counter that was used to obtain the location, and (optionally) hyperlink
information. A record may be ignored or discarded but, regardless of this, if an entry
has at least one record it will be considered for selection for any of the “recorded”
selection options.

Record Count

An entry’s record count is the total number of records (including discarded and ig-
nored) written to the .aux file that are associated with the entry. It’s also possible to
have sub-totals for each record counter.

Recorded Entry

An entry that has one or more records.

XXVI

Glossary

Regular Expression

A pattern that specifies how to match text. Unless indicated otherwise, resource op-
tions that use regular expressions are anchored. See Java’s Pattern class API [5] for
details of the regular expression syntax.

Resource Command

\glsxtrresourcefile or \GlsXtrLoadResources.

Resource Locale

the default locale for the given resource set. This can be set with the 1ocale resource
option. If not explicitly set, then the default will be the document language, if it has
been detected by tracklang or identified with —-1ocale, or the JrE locale otherwise.

Resource Set

The set of options and entries associated with a resource command. See section 1.5.

Secondary Collator Strength

A collator strength value that indicates only primary and secondary differences are
considered significant during comparison. This is locale dependant. For example, in
some languages different accented forms of the same base letter may be considered a
secondary difference.

Secondary Entry

For the tertiary entry types, such as @tertiaryindexabbreviationentry, there are
only actually two objects defined within bib2gls: the primary and the dual, but the
code that is written in the . glstex file for the dual entry actually defines two entries,
which are the secondary and tertiary entries. This should not be confused with the
secondary glossary. See section 4.5.
Secondary Glossary
A secondary glossary is one that contains labels of entries that have been defined for
another glossary. The actual entry’s type field will be set to the primary glossary.
Sibling Entry
Two or more child entries are siblings if they all share the same parent entry. See
section 5.5.

Spawned Entry

A duplicate entry created from a multi-entry type (such as @spawnentry).

Sub-entry

A child entry. More specifically, when contrasted with sub-sub-entry etc, this may
refer to level 1 entries (which have a parent that is a top-level entry). See section 5.5.

XXVIi

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Glossary

Supplemental (or Supplementary) Document

A related document from which supplemental records are obtained.

Supplemental Record

A record obtained from another document. See section 5.11.

Tertiary Collator Strength
A collator strength value that indicates only primary, secondary and tertiary differ-
ences are considered significant during comparison. This is locale dependant. For
example, different cases of the same base letter may be considered a tertiary differ-
ence.

Tertiary Entry
An entry that isn’t defined as a separated object within bib2gls, but is defined within
the .glstex file as a by-product of the dual definition code for tertiary entry types.

Top-level Entry
An entry that doesn’t have a parent entry. This entry is the hierarchical root for all its
descendents. See section 5.5.

Unrecorded Entry

An entry that doesn’t have any records.

XXViii

1 Introduction

If you have extensively used the glossaries [14] or glossaries-extra [13] package, you may have
found yourself creating a large . tex file containing many definitions that you frequently use
in documents. This file can then simply be loaded using \input or \loadglsentries, but a
large file like this can be difficult to maintain and if the document only actually uses a small
proportion of those entries, the document build is unnecessarily slow due to the time and
resources taken on defining the unwanted entries.

The aim of bib2gls is to allow the entries to be stored in a . bib file, which can be main-
tained using a reference system such as JabRef. The document build process can now be
analogous to that used with bibtex (or biber), where only those entries that have been
recorded in the document (and possibly their dependent entries) will be extracted from the
.bib file. Since bib2gls can also perform hierarchical sorting and can collate location lists,
it doubles as an indexing application, which means that the makeglossaries step can be
skipped. Note that bib2gls doesn’t warn you if an entry that’s referenced in the document
doesn’t exist in any of the supplied .bib files, but instead relies on the glossaries-extra pack-
age to generate the warning. So at the end of the document build check the .1log file for
warnings.

You can’t use \glsaddall with bib2gls as that command works by iterating over all de-
fined entries and calling \glsadd{(label)}. On the first BKIgX run there are no entries defined,
so \glsaddall does nothing. If you want to select all entries, just use selection={all}
instead (which has the advantage over \glsaddall in that it doesn’t create a redundant
location for each entry).

Note that bib2gls requires the extension package glossaries-extra and can’t be used with
just the base glossaries package, since it requires some of the extension commands. See the
glossaries-extra user manual [13] for information on the differences between the basic pack-
age and the extended package, as some of the default settings are different.

Since information required by bib2gls is written to the .aux file, it’s not possible to run
bib2gls through TgX’s shell escape while the .aux file is open for write access. (The .aux
file is closed after the end document hook, so it can’t be deferred with \AtEndDocument.)
This means that if you really want to run bib2gls through \write18 it must be done in the
preamble with \immediate. For example:

\immediate\write18{bib2gls \jobname}

As from version 1.14 of glossaries-extra, this can be done automatically with the automake
option if the . aux file exists. (Remember that this will require the shell escape to be enabled.)

1.1 Default Encoding

1.1 Default Encoding

Both XgiTEX and LuaETEX default to UTF-8 encoding. With modern TgX distributions, pdfETEX
also defaults to UTF-8 but may be changed with the inputenc package. The glossaries-extra
package writes the document encoding to the . aux file so that bib2gls can pick it up. How-
ever, if it doesn’t match bib2gls expected encoding, it will have to close the file and reopen
it.

The default encoding for Java applications, such as bib2gls, is the default encoding of the
Java Virtual Machine (jvm). This typically matches the operating system’s default, but can
be changed (see below). If you don’t want to alter the yvm’s default, you can set the bib2gls
default with --default-encoding.

In general, UTF-8 works best with bib2gls, but you need to be careful if your jvmisn’t set
up to use UTF-8 by default as you can end up with encoding mismatches. This can happen
with some versions of Windows, so it’s a good idea to double-check the bib2gls transcript
file to make sure all the encoding information is correct.

The default encoding is written at the start of the . glg file. For example:

Default encoding: UTF-8

When a file is opened, the associated encoding is written to the . glg file. For example, when
the .aux file is opened:

Reading myDoc.aux
Encoding: UTF-8

If the document encoding is detected in the .aux file (which bib2gls should now be able to
do), the encoding will be written to the transcript. For example:

TeX character encoding: UTF-8

When a .bib file is read, the charset setting, the detected encoding (from the encoding
comment line, see section 4.1), if found, and the encoding actually used are written. For
example, where charset hasn’t been set but an encoding comment line has been found:

Parsing bib files for resource myDoc.glstex.
Default encoding: not set

Detected encoding: UTF-8

Reading symbols.bib

Encoding: UTF-8

The file encodings used by bib2gls are as follows:
« Writing the . glg transcript file: default encoding.

+ Reading the document .1log file: -—log-encoding setting, if supplied, otherwise the
default encoding.

Note that the .1log file may not have the same encoding as the .tex file [17]. In the
case of the T1 font encoding, the encoding will be close enough to ISO-8859-1 for

1.2 Example Use

that to be used with bib2gls. Any problematic character will trigger a warning and
bib2gls will quit reading the file. This will most likely be in an overfull warning, by
which point bib2gls should have gathered all the information it requires.

+ Reading the .aux file: the -—tex-encoding setting, if supplied, or UTF-8 if fontspec
is detected in the . log file, otherwise the default encoding.

+ Reading the .bib files: the charset resource option, if supplied, or the encoding spec-
ified by the encoding comment line in the .bib file (see section 4.1), otherwise the
default encoding.

« Writing the . glstex files: the --tex-encoding setting, if supplied, or UTF-8 if font-
spec detected in the . log file, or the document encoding picked up from the . aux file,
otherwise the default encoding.

For example:
bib2gls --log-encoding IS0-8859-1 --default-encoding UTF-8 myDoc

To change the default encoding for the jvm set the JAVA_TOOL_OPTIONS environment
variable to include -Dfile.encoding=(encoding) where (encoding) is the desired default
encoding (such as UTF-8). Note that this will affect all your installed Java applications, not
just bib2gls, (for example, JabRef).

If you have a problem with non-ASCII characters not displaying correctly in your docu-
ment:

+ Check that the file encoding of your document . tex and . bib files have been correctly
set by your text editor.

+ Check that your document supports that encoding (for example, through the inputenc
package).

« Checkbib2gls’s transcript file for the encoding information to ensure that the settings
are correct.

1.2 Example Use

The glossary entries are stored in a .bib file. For example, the file entries.bib might
contain:

Qentry{bird,
name={bird},
description = {feathered animal}

by

@abbreviation{html,
short="html",

1.2 Example Use

long={hypertext markup language’
b

@symbol{v,
name={\vec{v}},
text={\vec{v}},
description={a vector}

}

@index{goose,plural="geese"}
Here’s an example document that uses this data:

\documentclass{article}
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={en-GB}), sort according to 'en-GB' locale

]

\begin{document}
\Gls{bird} and \gls{goose}.
Symbol: \gls{v}.
Abbreviation: \gls{html}.

\printunsrtglossaries
\end{document}

If this document is called myDoc . tex, the build process is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

(This manual assumes pdflatex for simplicity. Replace with latex, xelatex or lualatex
as appropriate.) If you want letter groups (either headed, with styles like indexgroup, or just a
blank line separator with nogroupskip={false}) then you need to use the --group switch:

pdflatex myDoc
bib2gls --group myDoc
pdflatex myDoc

You can have multiple instances of \GlsXtrLoadResources. For example:

1.2 Example Use

\documentclass{article}
\usepackage [record,index,abbreviations,symbols]{glossaries-extra}t

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={en-GB},’, sort according to 'en-GB' locale
match={entrytype={entry}},’% only select Qentry
type={main}), put these entries in the 'main' glossary

\GlsXtrLoadResources|[
src={entries},’ data in entries.bib
sort={en-GB},’, sort according to 'en-GB' locale
match={entrytype={abbreviation}},’% only select @abbreviation
type={abbreviations}’ put these in the 'abbreviations' glossary

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={letter-case},’ case-sensitive letter sort
match={entrytype={symbol}},’% only select @symbol
type={symbols}), put these entries in the 'symbols' glossary

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={index}},% only select Q@index
type={index}’, put these entries in the 'index' glossary

\begin{document}

\Gls{bird} and \gls{goosel}.

Symbol: \gls{v}. Abbreviation: \gls{html}.
\printunsrtglossaries

\end{document}

There are more examples provided in chapter 8 and also in the bib2gls gallery.

Note that there’s no need to called xindy or makeindex since bib2gls automatically sorts
the entries and collates the locations after selecting the required entries from the . bib file and
before writing the temporary file that’s input with \GlsXtrLoadResources (or the shortcut
\glsbibdata).! This means the entries are already defined in the correct order, and only

"This document will mostly use \GlsXtrLoadResources.

https://www.dickimaw-books.com/gallery/#bib2gls

1.3 Logical Divisions: type vs group vs parent

those entries that are required in the document are defined, so \printunsrtglossary (or
\printunsrtglossaries) may be used. (The “unsrt ” part of the command name indicates
that all defined entries should be listed in the order of definition from glossaries-extra’s point
of view, see the supplementary document “glossaries-extra and bib2gls: An Introductory
Guide” (bib2gls-begin.pdf) for further details.)

If you don’t provide a value with the record option, then record={only} is assumed. This
saves the same indexing information that’s used with the \makeglossaries and \make-
noidxglossaries methods (described in the main glossaries user manual [14]). As from
glossaries-extra version 1.37, you can instead use record={nameref}, which saves some
extra information for each location that’s not available for the other indexing methods. See
--merge-nameref-on for further details.

If you additionally want to use an indexing application, such as xindy, you need the pack-
age option record={alsoindex} and use \makeglossaries and \printglossary (or the
iterative \printglossaries) as usual. This requires a more complicated build process:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(The entries aren’t defined until the second KIEX run, so the indexing files required by xindy
or makeindex can’t be created until then.) In this case, bib2gls is simply being used to fetch
the entry definitions from one or more .bib files, with the sorting and collating performed
by the other indexing application (so the resource option list would need sort={none} and
save-locations={false}). In general, it’s best to avoid this hybrid method unless you
have a particular set of xindy rules that can’t be replicated with bib2gls.

1.3 Logical Divisions: type vs group vs parent

If you have a document with many terms that need listing, it’s likely that you may want to
divide the terms into separate blocks or units for easier reading. There are three fields that
are used for this.

type The highest division is the glossary to which the entry belongs. The glossary must
first be defined (see section 1.4) with an associated label used to identify it. The title
is assigned to the glossary when it is defined or it can be overridden with the title
key. The glossary is displayed using \printunsrtglossary and the title is placed in
a sectioning command by default.

bib2gls does not provide any means of sorting glossary types. If you use
\printunsrtglossaries the order will be according to the order in which the
glossaries were defined. You may use \printunsrtglossary to list individual
glossaries in your own preferred order.

1.3 Logical Divisions: type vs group vs parent

group The entries within a glossary can form groups as a by-product of the sorting method.
This must be enabled with the ——group switch and isn’t available for the sort methods
listed in table 5.1. The group label is stored in the group field. This is an internal field
that typically shouldn’t be set in the .bib file.

You can specify your own custom groups but if you do so you must ensure that the
terms are ordered in such a way that they are gathered according to group. This is
typically done by splitting the glossary into blocks using a separate \GlsXtrLoad-
Resources with the group option set. You control the order of the groups by your
ordering of \GlsXtrLoadResources. The group title can be assigned using \glsxtr-
setgrouptitle within the document.

bib2gls does not sort by group title. At most it can sort by the group label (by
changing the sort-field) but this is usually an indication that you actually
have a hierarchical glossary and you ought to be using the parent field instead.
(Compare sample-textsymbols.tex and sample-textsymbols2.tex.)

parent An entry may have one or more sub-entries. Most of the sort methods will produce
a hierarchical ordering that ensures that the sub-entries are listed immediately after
their parent entry. The parent entry is identified by the parent field which should
contain the parent’s label.

bib2gls sorts the parent and child entries using the same comparator. The sort
methods listed in table 5.1 disregard the hierarchical level, which can result in
child entries becoming detached from their parent entry. The other methods
sort hierarchically using the same comparator but take the hierarchical level
into account.

\

Suppose you have a mixture of terms, abbreviations and symbols, then you might want
to have three glossaries that are listed in the table of contents. In this case, you use the
type field or the type resource option. The ordering of the glossaries is determined by the
ordering of the \printunsrtglossary commands within the document. For example:

\printunsrtglossary
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary[type={symbols}]

Suppose that your list of terms spans many pages and you feel it would be helpful to the
reader to split it up into letter groups then you would need to run bib2gls with the --group
switch and use a glossary style that supports letter groups for that glossary. For example:

\printunsrtglossary[style={indexgroup}]

Suppose that your list of symbols consists of pictographs, Latin characters and Greek char-
acters and you want them grouped together in that order. Then you would use a separate

1.3 Logical Divisions: type vs group vs parent

\GlsXtrLoadResources for each block and assign your own custom group. This means
ensuring that each resource set only selects the terms for that group. The simplest way of
doing this is to have a separate .bib file for each set. For example:

\glsxtrsetgrouptitle{pictographs}{Pictographs}
\glsxtrsetgrouptitle{latinsymbols}{Latin Characters}
\glsxtrsetgrouptitle{greeksymbols}{Greek Characters}
\GlsXtrLoadResources|[
src={generalsymbols},’% data in generalsymbols.bib
group={pictographs},
type={symbols}
]
\GlsXtrLoadResources|[
src={latinsymbols},’ data in latinsymbols.bib
group={latin},
type={symbols}
]
\GlsXtrLoadResources|[
src={greeksymbols},’ data in greeksymbols.bib
group={greek},
type={symbols}
]

Suppose instead that you have many of these logical blocks and you want them ordered
according to the block title. In this case you have a hierarchical glossary and you need to use
the parent field. You then need to select an appropriate glossary style.

If you only want to have a single . bib file that contains all your entries and you want to
share it across multiple documents then the most flexible approach is to use custom fields
and entry types that can be aliased according to the needs of the resource sets.

For example, the file entries.bib:

% Encoding: UTF-8

@indexplural{latin,text={Latin character}}
@indexplural{greek,text={Greek character}}
@indexplural{pictograph}

@symbol{fx,
name={\ensuremath{f (x)}},
description={function of x},
identifier={latin}

+

@symbol{f'x,
name=\ensuremath{f' (x)},

1.3 Logical Divisions: type vs group vs parent

description={derivative of \gls{fxl}},
identifier={latin}

}

O@symbol{pi,
name={\ensuremath{\pil}},
description={ratio of circumference to diameter},
identifier={greek}

}

O@symbol{heart,
name={\ensuremath{\heartsuit}},
description={heart},
identifier={pictograph}

}

O@symbol{diamond,
name={\ensuremath{\diamondsuit}},
description={diamond},
identifier={pictograph}

}

@abbreviation{html,
short={html},
long={hypertext markup languagel},
identifier={markuplanguage}

}

O@abbreviation{xml,
short={xml},
long={extensible markup language},
identifier={markuplanguage’}

¥

@entry{duck,
name={duck},
description={a waterbird with webbed feet},
identifier={animal}

}

Qentry{parrot,
name={parrot},
description={mainly tropical bird with bright plumage},
identifier={animal}

1.3 Logical Divisions: type vs group vs parent

3

This has a custom field identifier. This will be ignored by bib2gls unless defined or
aliased in the document.

Here’s an example document that creates three glossary types (the default main glossary
and the glossaries created with the abbreviations and symbols options). They are listed
in the order of \printunsrtglossary and their titles are added to the table of contents.

The custom identifier fields are ignored for the main and abbreviation glossaries, but
they are aliased for the symbols to the group field. Since I've split the symbols glossary into
blocks with each block only containing entries that have the same group value, this isn’t a
problem. It also won’t trigger a warning with --warn-non-bib-fields asit’s being aliased
rather than set in the .bib file. The blocks appear in the same order as the corresponding
\GlsXtrLoadResources commands. The title for each block is provided in the document
using \glsxtrsetgrouptitle.

\documentclass{article}
\usepackage [record,abbreviations,symbols]{glossaries-extra}

\renewcommand{\GlsXtrDefaultResourceOptions}{
selection={all},src={entries},save-locations={false}}

\GlsXtrLoadResources[type={main},match={entrytype=entryl}]
\GlsXtrLoadResources[type={abbreviations},
match={entrytype=abbreviation}]

\glsxtrsetgrouptitle{pictograph}{Pictographs}

\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=pictographl}]

\glsxtrsetgrouptitle{latin}{Latin Characters}
\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=latin}]

\glsxtrsetgrouptitle{greek}{Greek Characters}
\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=greek}]

\begin{document}

\tableofcontents
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary

10

1.4 Defining a New Glossary

\printunsrtglossary[type={symbols}, style={treegroupl}]
\end{document}

In the above example document, the symbols list is divided into three groups, listed in the
order: Pictographs, Latin characters and Greek characters. If you want these titles ordered
alphabetically then you need a hierarchical structure instead. This can be obtained by aliasing
the custom identifier field to parent:

\documentclass{article}

\usepackage [record,stylemods={topic},abbreviations,symbols]{glossaries-
extra}

\renewcommand{\GlsXtrDefaultResourceOptions}{%
selection={all},src={entries},save-locations={false}}

\GlsXtrLoadResources[type={main},match={entrytype=entryl}]
\GlsXtrLoadResources[type={abbreviations},
match={entrytype=abbreviation}]

\GlsXtrLoadResources [type={symbols},
field-aliases={identifier=parent},
match={entrytype=symbol,entrytype=indexplural}]

\begin{document}

\tableofcontents
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary
\printunsrtglossary[type={symbols}, style={topic}]
\end{document}

The style used for the symbols list is now topic rather than treegroup. This results in a slightly
different appearance. You can select the most appropriate style according to your needs (see
the gallery of predefined styles [15]). The topic ordering is now: Greek characters, Latin
characters and Pictographs.

1.4 Defining a New Glossary

Some of the examples in this manual use \newglossary* to define a new glossary type and
some use \newignoredglossary or \newignoredglossary*. You may be wondering why
the starred forms and why define an ignored glossary?

The base glossaries package was originally designed to work with makeindex. Support
for xindy was later added, but both require three files per glossary type: the transcript file
(created by the indexing application), the file written by BIEX (and input by the indexing

11

1.4 Defining a New Glossary

application) and the file input by EIEX (and written by the indexing application). So when a
new glossary is defined with \newglossary, this not only defines internal control sequences
that store the list of entry labels associated with that glossary, the title and the entry format
but also has to define internal control sequences that store the three file extensions. The
starred form \newglossary* is just a shortcut that forms the extensions from the glossary
label. For the purposes of bib2gls, this is simpler than the unstarred version since the
extensions are now irrelevant as they are only applicable to makeindex and xindy. (Unless,
of course, you are using a hybrid method with record={alsoindex}.)

Since some users wanted the ability to define entries that were common enough to not
be worth including in any glossary lists, the concept of an ignored glossary was introduced,
defined with \newignoredglossary. This only requires an internal control sequence to
store the list of entry labels associated with that glossary® and the associated internal com-
mand that governs the way that commands like \gls are displayed for that glossary type.
Since this type of glossary has no associated files, it can’t be used with \printglossary and
therefore isn’t included in the list of glossary labels that’s iterated over by commands like
\printglossaries. Since there’s no glossary list (and therefore no targets), \newignored-
glossary additionally disables hyperlinks for that glossary type, but it doesn’t disable in-
dexing. The indexing macro is still called, but because there’s no associated file to write to,
it has no effect. With bib2gls, the indexing is written to the .aux file and so does have an
effect.

Although ignored glossaries can’t be used with \printglossary, they can be used with
\printunsrtglossary, which is designed to work without any indexing, but you need to
explicitly set the title in the optional argument to override the default. Ignored glossaries
still can’t be used in \printunsrtglossaries, since they’re not included in the list that
this command iterates over.

So \newignoredglossary (or \provideignoredglossary) is useful with bib2gls if
you’re happy to use \printunsrtglossary with the type and title options as it reduces
the overall number of internal control sequences. Ignored glossaries are also useful for stand-
alone definitions (\glsxtrglossentry) or with \printunsrtinnerglossary as no title is
required in those cases (see sample-nested.tex for an example).

Since there is now the possibility of targets (created within \printunsrtglossary or
\printunsrtinnerglossary or \glsxtrglossentry), it’s convenient to have an ignored
glossary that doesn’t suppress the hyperlinks, which can be obtained with the starred form
\newignoredglossary* provided by glossaries-extra (or \provideignoredglossaryx).

Some resource options, such as master, secondary, and trigger-type, need to ensure
that a required glossary is defined. In this case, bib2gls uses \provideignoredglossary
in the .glstex file even if -—no-provide-glossaries is set. Note that only ignored-type
uses the unstarred \provideignoredglossary.

If you haven’t already defined that glossary in the document with \newglossaryx*, you’ll
need to set the title in the optional argument of \printunsrtglossary if you don’t want the
default. The glossary won’t be defined on the first run (if the definition is only provided in
the .glstex file) but \printunsrtglossary will just give a warning if the type is undefined

2All entries must be assigned to a glossary. If you don’t use the type field the default is used.

12

1.5 Resource Sets

so it won’t interrupt the document build.

If you want bib2gls to automatically provide unknown glossaries for all entries that have
the type field set (unrelated to the master, secondary, trigger-type and ignored-type
options) then use the --provide-glossaries switch.

The base glossaries package provides a command that can be used to test the existence of
a glossary:

\ifglossaryexists{(label)}{(true)}{(false)}

The unstarred version considers ignored glossaries as non-existent (and so will do (false) for
an ignored glossary). As from v4.46, this command now has a starred version \ifglossary-
exists* that considers ignored glossaries as existing (and so will do (true) for an ignored
glossary). In the event that you have an older version of glossaries, the glossaries-extra pack-
age (v1.44+) will provide the starred form if it hasn’t been defined. (In general, it’s best to
have up-to-date versions of both glossaries and glossaries-extra.)

1.5 Resource Sets

Each instance of \GlsXtrLoadResources (or \glsbibdata) in the document represents a
resource set. Each resource set has one or more associated .bib files that provides the data
for that set. Command line switches (chapter 3) are applied to all resource sets. Resource op-
tions (chapter 5) are only applied to that specific resource set. Each resource set is processed
in stages:

Stage 1 (Initialisation) Occurs after the .aux file has been read, this stage parses the re-
source option list and ensures options are valid and don’t cause a conflict. The tran-
script will show the message

Initialising resource (resource-name)

at this point.

Stage 2 (Parsing) All the .bib files associated with the resource set are parsed. Entry
aliases (identified by entry-type-aliases) are performed. The multi-entry types,
such as @bibtexentry and @progenitor, spawn their associated primary entries.
Preamble information (provided by @preamble) is saved but is not interpreted at this
stage. The transcript will show the message

Parsing bib files for resource (resource-name)

at this point.

Stage 3 (Processing Entries) The transcript will show the message

Processing resource (resource-name)

13

1.5 Resource Sets

at this point. For each entry that was found in the corresponding set of .bib files:
« Records are transferred to aliases if required (alias-1oc).
« Field checks and modifications are performed:
— field aliases are performed (field-aliases);

— known fields identified with save-original-idand save-original-entrytype
are set (internal fields that don’t have a corresponding key for use with \new-
glossaryentry aren’t set until the . glstex file is written);

- ignored fields (identified by ignore-fields, not by omit-fields) are re-
moved;

- case-changes (for example, short-case-change) are performed, except for
the name field and fields identified with field-case-change;

- suffixes are appended if required (for example, with short-plural-suffix);

- field replications are made (replicate-fields), and any of the above case-
change or suffixes required on the replicated fields are performed;

- the group field is assigned if group={(label) } is set;

— any variables (identified by @string) are expanded (if not already done in
any of the previous steps);

- any fields that have been identified by bibtex-contributor-fields are
converted;

— any fields that have been identified with encapsulate-fields are con-
verted;

- any fields that have been identified with encapsulate-fields* are con-
verted;

— any fields that must be converted into a label form (1abelify or labelify
-1list) are processed;

- any fields identified by dependency-fields are parsed for dependent en-
tries;

- any fields whose value must be a label are interpreted if interpret-label
-fields is set;

— the parent field is adjusted according to the label prefix settings (1abel
-prefix etc);

- \makefirstuc protection is applied according to ~-mf irstuc-protection
and --mfirstuc-math-protection;

— fields are parsed for commands like \gls or \glshyperlink and also checked
for nested links if -—nested-1ink-check is set;

— the description field is adjusted according to strip-trailing-nopost;

- end punctuation is checked according to check-end-punctuation;

14

1.5 Resource Sets

- field assignments are made (assign-fields), and any of the above case-
change or suffixes required by the destination fields are performed;

- name adjustment is performed if compound-adjust-name is set (and the cri-
teria is met);

- name case-change is performed if name-case-change is set;
— if copy-alias-to-see={true} the alias is copied to the see field;
— general field case changes identified by field-case-change are performed;

- any fields that have been identified with interpret-fields are replaced
with their interpreted values;

— any fields that have been identified with hex-unicode-fields will have
Unicode characters replaced;

— check for nonumberlist.
« The dual version (if appropriate) is created.

« Records are added to the entry’s location list (or transferred to the dual/primary
according to combine-dual-locations).

+ The type, category and counter fields are set according to type, dual-type,
category, dual-category, counter and dual-counter.

« Filtering is applied (according to options like match butnot selectionor limit).
« Required fields are checked for existence.

+ Dependencies are registered (if selection={recorded and deps}orselection
={recorded and deps and see}).

« Any fields that have been identified by date-time-fields, date-fields or
time-fields are converted.

If selection={recorded and deps and see} then any recorded entries that have
been cross-referenced by an unrecorded entry, will register a dependency with the
unrecorded entry.

The compound entry options compound-dependent and compound-add-hierarchy
are implemented, if enabled.

Finally, supplemental records are added to entries.

Stage 4 (Selection, Sorting, Writing) Entries are selected from the list according to the
selection setting, sorting is performed (if required), truncation is applied (if 1imit
is set) and the .glstex file is written. The transcript will show the message
Selecting entries for resource (resource-name)

or (if master)

Processing master (resource-name)

15

1.5 Resource Sets

at this point.

Options such as copy-to-glossary and omit-fields are implemented when each
entry has its definition written to the . glstex file. This means that the omitted fields
will still be available for actions such as sorting, establishing dependencies, or field
assignments.

Parent entries must always be in the same resource set as their child entries. (They may be
defined in different . bib files as long as all those . bib files are listed in the same src.) Other
forms of dependencies may be in a different resource set under certain circumstances. These
types of dependencies are instances of commands such as \gls being found (for example,
in the description field), or the cross-reference fields (see, seealso or alias or fields
identified with dependency-fields) in recorded entries that reference unrecorded entries.

The “cross-referenced by” dependencies enabled with selection={recorded and deps
and see} (where an unrecorded entry references a recorded entry through the cross-reference
fields) aren’t supported across resource sets (even with —~—force-cross-resource-refs).

A cross-resource reference is a reference from a recorded entry provided in one resource
set to an unrecorded entry in another resource set. Since the contents of each resource set’s
preamble must be processed before fields can be interpreted and one resource set’s preamble
may contain definitions that override another, cross-resource references can’t be supported
if fields containing cross-referencing information need to be interpreted.

The cross-resource reference mode determines whether or not bib2gls can support cross-
resource references. If enabled, the message

Cross-resource references allowed.

will be written to the transcript otherwise the message is
Cross-resource references disabled.

The mode can only be enabled if the following condition is satisfied:

« the interpreter is off (--no-interpret), or

« every resource set either doesn’t have a preamble (@preamble) or has interpret
-preamble={false} set.

If you know the preamble contents won’t cause a problem, you can force the cross-resource
references mode on with ——-force-cross-resource-refs.

If you don’t use either selection={recorded and deps} or selection={recorded
and deps and see} then the dependencies aren’t picked up for that resource set (and so
can’t be cross-referenced from another resource set).

Trails don’t work with cross-resource references. For example, if entry A has been recorded
and depends on entry B that hasn’t been recorded, then B can be picked up from a different
resource set, but if A and B are in the same resource set and B is dependent on C' which is
in a different resource set then C' won’t be picked up if it hasn’t been recorded because B
hasn’t been recorded and is in a different resource set.

If the cross-resource reference mode is enabled then stage 3 and stage 4 are processed in
separate loops, otherwise they are processed in the same loop.

16

1.6 bib2gls Quarks

1.6 bib2gls Quarks

A bib2gls quark is similar in principle to a EIEX3 quark, in that it is a token that looks like
a control sequence but isn’t intended to be interpreted as a BIgX command. Unlike ETEX3
quarks, their name isn’t prefixed with \q_ and can coincidentally look the same as a ETgX
command. This is particularly the case with regular expressions that have escaped characters
to indicate a literal character. For example, in a regular expression a pipe or vertical bar
character | indicates “or”. If you want to match a literal pipe, you need to identify this with
\ |. This is distinct from, but visually identical to, the KIgX command used to create a double
vertical bar in maths mode.

The resource options provided in \GlsXtrLoadResources expand as they are written to
the .aux file. This allows commands to be used within the resource options that expand
to a complex option that may be required multiple times. For example, \G1sXtrBibTeX-
EntryAliases or \glsxtrhyphenrules. Unfortunately, this means that quarks must be
prevented from expansion as they form part of the option syntax and are not intended for
use in the document.

This means that, unless they happen to coincidentally be robust commands, they must be
preceded by either \protect or \string. Since \protect adds a space afterwards, \string
is usually better if the syntax requires that spaces after quarks are significant.

This can lead to cumbersome expressions, but it’s possible to redefine \glsxtrresource-
init to locally redefine these quarks to expand to detokenized forms of themselves. For
example:

\renewcommand*{\glsxtrresourceinit}{\let\u\glshex}

Since there are a number of these quarks, as from v1.51, glossaries—extra-bib2gls (which is
automatically loaded with record) provides \GlsXtrResourceInitEscSequences, so you
can change the above to the following:

\renewcommand*{\glsxtrresourceinit}{J
\GlsXtrResourceInitEscSequences

3

Note that if new quarks, such as \INTERPRETNOREPL and \REPLACESPCHARS, are added to
bib2gls, they may not be included in \GlsXtrResourceInitEscSequences if they were
introduced to bib2gls after the version date of the glossaries-extra package installed on your
system. In this case, you will need to add them. For example:

\renewcommand*{\glsxtrresourceinit}{/
\GlsXtrResourceInitEscSequences
\def\INTERPRETNOREPL{\string\INTERPRETNOREPL}
\def\REPLACESPCHARS{\string\REPLACESPCHARS}/

i

This will locally define the quarks listed below. Since \glsxtrresourceinit is used in
a scoped context, the definitions only have an effect within the protected write, and so this
shouldn’t interfere with the corresponding commands that are required in the document.
Note that these quarks should only be used in their designated contexts.

17

1.7 Indexing

General \u(hex) is recognised in certain resource options (such as field-concat-sep) as
indicating the Unicode character with the given hexadecimal code.

Regular expressions The following indicate a literal character: \. \\ \/ \| \& \+ \< \>
Nk \S N7\~ NC\) N[NNI A" \-\7 \: \#. Note that regular expressions in resource
options are typically anchored, so there shouldn’t be any need to use ~ or $ to denote
the start and end.

Field assignments The following commands may be used in the (element-list) syntax of
assign-fields: \CS, \MGP, \LEN, \TRIM, \INTERPRET, \INTERPRETNOREPL, \RE-
PLACESPCHARS, \LC, \UC, \FIRSTLC, \FIRSTUC, and \TITLE.

Conditionals The (condition) part of the assign-fields syntax recognises \LEN, \CAT,
\IN, \NIN, \PREFIXOF, \NOTPREFIXOF, \SUFFIXOF, \NOTSUFFIXOF and \NULL.

Finally, this isn’t actually a quark, but \cs{(csname)?} is defined to expand to the literal
string \ (csname) so you can use it for any other escape sequences that aren’t covered above.
For example, \cs{n} for a newline \n.

1.7 Indexing

The dual index entries such as @dualindexentry (described in section 4.5) are designed to
provide a way of including an entry in a glossary (with a description) and also include the
term (without the description) in an index. Additional terms that should only appear in the
index can be defined with @index. (See, for example, the sample-multil.tex and sample
-multi2.tex sample files.)

Although bib2gls is designed to create indexes as well as glossary lists using the same
interface (\gls etc), it is possible to have a mixture of bib2gls and \index. For example:

\documentclass{report}

\usepackage{makeidx}
\usepackage [record] {glossaries-extra}

\makeindex
\GlsXtrLoadResources[src={entries}]

\glssetcategoryattribute{general}{dualindex}{true}
\glssetcategoryattribute{symbol}{dualindex}{true}
\glssetcategoryattribute{abbreviation}{dualindex}{true}

\glssetcategoryattribute{general}{indexname}{hyperbf}

\glssetcategoryattribute{symbol}{indexname}{hyperbf}
\glssetcategoryattribute{abbreviation}{indexname}{hyperbf}

18

1.8 Security

\begin{document}
\chapter{Example}
\gls{bird}, \gls{html}, \gls{v} and \glspl{goosel}.

\printunsrtglossaries
\printindex
\end{document}

If the document is called myDoc . tex then the document build is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeindex myDoc.idx
pdflatex myDoc

This requires an additional KIEX call between bib2gls and makeindex since the entries must
be defined before they can be indexed (and they can’t be defined until bib2gls creates the
associated . glstex files).

Note that this method will use the sort value obtained by bib2gls as the (sort) part within
\index{(sort)@(actual)}. Be careful if you use makeindex as this can result in Unicode char-
acters appearing in the sort value, which makeindex doesn’t support. The (actual) part is
given by \glsentryname{(label)}. (You can change the (sort) and (actual) parts by redefin-
ing \glsxtrautoindexassignsort and \glsxtrautoindexentry. See the glossaries-extra
manual for further details.)

1.8 Security

TgX Live come with security settings openin_any and openout_any that, respectively, gov-
ernread and write file access (in addition to the operating system’s file permissions). bib2gls
uses kpsewhich to determine these values and honours them. MikTeX doesn’t use these set-
tings, so if these values are unset, bib2gls will default to a (any) for openin_any and p
(paranoid) for openout_any.

The only external processes that are run by bib2g1s are calls to kpsewhich to check the se-
curity settings and locate files on TgX’s path. These are started with Java’s ProcessBuilder
class so there should be no issues with spaces or shell special characters in the argument. The
--debug switch will write the process call in the transcript file and will delimit the argument
in the log with single quote characters for convenience, but the process isn’t actually called
in that way.

bib2gls creates files with the extension .glstex, which are input by \GlsXtrLoad-
Resources (and therefore by the shortcut \glsbibdata). This extension is fixed and is
imposed by both bib2gls and \GlsXtrLoadResources. bib2gls also creates a transcript
file with the default extension .glg. This may be overridden by the --log-file switch, but
bib2gls always forbids write access to any file with the following extensions: .tex, .1tx,
.sty, .cls, .bib, .dtx, .ins, .def and .1df.

19

1.9 Localisation

1.9 Localisation

The messages produced by bib2gls are fetched from a resource file called bib2gls-(lang)
.xml, where (lang) is a valid Internet Engineering Task Force (1IETF) language tag.

The appropriate file is searched for in the following order, where (locale) is the Java locale
or the value supplied by the --1ocale switch:

1. (lang) exactly matches (locale). For example, my locale is en-GB, so bib2gls will first
search for bib2gls-en-GB.xml. This file doesn’t exist, so it will try again.

2. If (locale) has an associated script, the next try is with (lang) set to (lang code)-(script)
where (lang code) is the two letter ISO language code and (script) is the script code.
For example, if (locale) is st-RS-Latn then bib2gls will search for bib2gls-sr-
Latn.xml if bib2gls-sr-RS-Latn.xml doesn’t exist.

3. The final attempt is with (lang) set to just the two letter ISO language code. For ex-
ample, bib2gls-sr.xml.

If there is no match, bib2gls will fallback on the English resource file bib2gls-en.xml.
(Currently only bib2gls-en.xml exists as my language skills aren’t up to translating it. Any
volunteers who want to provide other language resource files would be much appreciated.)

In addition to the main language file, it’s possible to have supplementary files that provide
text that matches the resource locale. These are in files called bib2gls-extra-(lang) .xml,
which has the same format as bib2gls—(lang) . xm1. These supplementary files will be loaded
automatically if they exist and if you have glossaries-extra v1.51+ (which will save a list of all
tracked languages for the document).

Note that if you use the loc-prefix={true} option, the textual labels (“Page” and “Pages”
in English) will be first be attempted from the supplementary file with the tags tag. (lang) . page
and tag. (lang) .pages (where (lang) is the language code) and then, if not found, from the
main resource file using the tags tag.page and tag.pages. In the event that the loaded re-
source file doesn’t match the document language and there’s no supplementary file, you will
have to manually set the correct translation (in English, this would be 1loc-prefix={Page,
Pages}). The default definition of \bibglspassim is also obtained from the resource file in
a similar manner.

There are also keys in the resource file to assist case-conversion. Currently, there’s only
support for the Dutch “IJ” case.

1.10 Conditional Document Build

If you are using a document build method that tries to determine whether or not bib2gls
should be run, you can find the information by searching the . aux file for instances of

\glsxtr@resource{(options)}{(filename)}

20

1.11 Manual Installation

Each instance corresponds to an instance of \GlsXtrLoadResources (or \glsbibdata)
where (filename) is the base name of the . glstex file that bib2gls needs to create for this
resource set. If the (options) part is missing the src option, then (filename) also indicates
the base name for the .bib file. In the case of \glsbibdata, the src option is automatically
set to the mandatory argument.

So the simplest check to determine if bib2gls needs to be run is to test if the .aux file
contains \glsxtrQresource. For example, with arara version 4.0:

% arara: bib2gls if found("aux", "glsxtr@resource")

A sophisticated method could check if (filename) . glstex is missing or is older than the
document . tex file for each instance of \glsxtr@resource found in the .aux file.

It might also be possible, although far more complex, to parse the (options) part in each
instance of \glsxtr@resource for src and determine if the corresponding . bib file or files
are newer than the .tex file.

It’s not possible to determine if the location lists require updating, just as it’s not possible
to do this for the table of contents (Toc), list of figures, list of tables etc. (Or, if it could be
implemented, the required code would make the document build far more complicated.)

In general, the basic algorithm is:

1. Run EIEX (or PDFEIREX etc).

2. If \glsxtr@resource is found in the .aux file then:
a) run bib2gls;
b) run KIEX (or PDFEIRX etc).

3. If \@istfilename is found in the .aux file then:

a) run makeglossaries (or makeglossaries-lite);

b) run BIEX (or PDFEIEX etc).

This allows for the record={alsoindex} package option. See also “Incorporating make-
glossaries or makeglossaries-lite or bib2gls into the document build” [12].

1.11 Manual Installation

In general it’s best to install bib2gls via your TgX package manager. However, if you are
unable to do this or if you are testing a development version, you can install manually using
the instructions below. Replace (TEXMF) with the path to your local or home TEXMF tree
(for example, ~/texmf).

Copy the files provided to the following locations:

« (TEXMF)/scripts/bib2gls/bib2gls. jar (Java application.)

« (TEXMF)/scripts/bib2gls/convertgls2bib. jar (Java application.)

21

https://www.dickimaw-books.com/latex/buildglossaries
https://www.dickimaw-books.com/latex/buildglossaries

1.11 Manual Installation

TEXMF)/scripts/bib2gls/datatool2bib. jar (Java application.)

{)

(TEXMF)/scripts/bib2gls/bibglscommon. jar (Java library.)

« (TEXMF)/scripts/bib2gls/texparserlib. jar (Java library.)

{)
{

TEXMF)/scripts/bib2gls/resources/bib2gls-en.xml (English resource file.)

TEXMF)/scripts/bib2gls/resources/bib2gls-extra-en.xml (Extra English re-
source file.)

(TEXMF)/scripts/bib2gls/resources/bib2gls-extra-nl.xml (Extra Dutch re-
source file.)

(TEXMF)/doc/support/bib2gls/bib2gls.pdf (This document.)

« (TEXMF)/doc/support/bib2gls/bib2gls-begin.pdf (Introductory guide.)

If you use the Unix man command, copy the bib2gls. 1 and convertgls2bib. 1 files to the
appropriate location.

If you are using a Unix-like system, there are also bash scripts provided called bib2gls. sh,
convertgls2bib.sh and datatool2bib.sh. Either copy them directly to somewhere on
your path without the . sh extension, for example:

cp bib2gls.sh ~/bin/bib2gls
cp convertgls2bib.sh ~/bin/convertgls2bib
cp datatool2bib.sh ~/bin/datatool2bib

or copy the files to (TEXMF)/scripts/bib2gls/ and create a symbolic link to them called
just bib2gls, convertgls2bib and datatool2bib from somewhere on your path, for ex-
ample:

cp bib2gls.sh ~/texmf/scripts/bib2gls/

cp convertgls2bib.sh ~/texmf/scripts/bib2gls/

cp datatool2bib.sh ~/texmf/scripts/bib2gls/

cd ~/bin

ln -s ~/texmf/scripts/bib2gls/bib2gls.sh bib2gls

1n -s ~/texmf/scripts/bib2gls/convertgls2bib.sh convertgls2bib
1n -s ~/texmf/scripts/bib2gls/datatool2bib.sh datatool2bib

The texparserlib. jar file isn’t an application but is a library used by both bib2gls. jar
and convertgls2bib. jar, and so needs to be in the same class path. (The library is in a
separate GitHub repository [10] as it’s also used by some of my other applications.)

Windows users can create a .bat file that works in a similar way to the bash scripts. To
do this, create a file called bib2gls.bat that contains the following:

QECHO OFF

FOR /F "tokens=+" %I IN ('kpsewhich --progname=bib2gls --format=texmfscripts
bib2gls.jar') DO SET JARPATH=%%I

java -jar "% JARPATHY" %

22

https://github.com/nlct/texparser

1.11 Manual Installation

Save this file to somewhere on your system’s path. (Similarly for convertgls2bib and
datatool2bib.) Note that TgX distributions for Windows usually convert . jar files to exe-
cutables.

You may need to refresh TgX’s database to ensure that kpsewhich can find the . jar files.
To test that the application has been successfully installed, open a command prompt or ter-
minal and run the following command:

bib2gls --version
convertgls2bib --version
datatool2bib --version

This should display the version information for both applications.

23

2 TgX Parser Library

The bib2gls application requires the TgX Parser Library texparserlib. jar' which is used
to parse the .aux and .bib files.

With the --interpret switch on (default), this library is also used to interpret the sort
value when it contains a backslash \ or a tilde ~ or a dollar symbol $ or braces { } (and when
the sort option is not unsrt or none or use).’

The other cases that the interpreter is used for are:

o when set-widest is used to determine the width of the name field;

o if labelify or labelify-1list are set the identified field values are first interpreted
(if they contain \ { } ~ or $) before being converted to labels;

 if interpret-label-fields={true}l is set and the parent, category, type, group,
seealso or alias fields contain \ or { or } the interpreter is used since these fields
must be just a label (other special characters aren’t checked as they won’t expand to
characters allowed in a label).

Information in the .aux file is parsed for specific commands but the arguments of those
commands are not interpreted so, for example, UTF-8 characters that occur in any resource
options will need to be detokenized when using inputenc to prevent expansion when they
are written to the . aux file. (In some options, such as sort-rule, you can use \glshex(hex)
syntax to specify a UTF-8 character.) Note that newer KIEX kernels have better support for
UTF-8 and this issue is less likely to occur.

The --no-interpret switch will turn off the interpreter, but the library will still be used
to parse the .aux and .bib files. Note that the sece field doesn’t use the interpreter with
interpret-label-fields={true} asit may legitimately contain BIEX code in the optional
tag part (such as \seealsoname or \alsoname).

The parser has a different concept of expansion to TgX and will expand some things that
aren’t expanded by KIEX (such as \MakeUppercase and \char) and won’t expand other com-
mands that would be expanded by BIEX (such as commands defined in terms of complicated
internals).

If you get a StackOverflowError while a field is being interpreted (with a long stack
trace that contains repeated file names and line numbers) then it’s likely you have an infinite
loop. For example, this can be triggered if a field contains \foo that has been defined as:

'https://github.com/nlct/texparser

2The other special characters are omitted from the check: the comment symbol % is best avoided in field values,
the subscript and superscript characters _ and ~ should either be encapsulated by $ or by \ensuremath,
which will be picked up by the check for $ or \, and the other special characters would indicate something
too complex for the interpreter to handle.

24

https://github.com/nlct/texparser

2 TgX Parser Library

\def\foo{\foo}

This will obviously also cause an error in the KIEX document as well (unless the document
has a different definition that doesn’t have this unbounded recursion).

The texparserlib. jar library is not a TgX engine and there are plenty of situations
where it doesn’t work. In particular, with bib2gls, it’s being used in a fragmented context
without knowing most of the packages used by the document or any custom commands or
environments provided within the document.

bib2gls can detect from the log file a small number of packages that the parser recognises.
Note that in some cases there’s only very limited support. For example, siunitx’s \si and
\unit commands are recognised but other commands from that package aren’t. See --1ist
-known-packages (page 41) for further details.

Since the parser doesn’t have a full set of commands available within the EIgX document,
when it encounters \renewcommand it won’t check if the command is undefined. If the
command isn’t defined, it will simply behave like \newcommand. Whereas with \provide-
command the parser will only define the command if it’s unrecognised.

The interpreter has its own internal implementation of the glossary-related commands
listed in table 2.1. These may be overridden by custom packages provided with the --custom
-packages switch. Note that commands that reference an entry, such as \glsentryname,
aren’t guaranteed to work across resource sets and will only be able to look up field values
that are known to bib2gls. (For example, the name field for abbreviations is typically set by
the associated abbreviation style, which isn’t available to bib2gls.)

If a command isn’t recognised, you can provide it in the @preamble and use \char to map
a symbol to the most appropriate Unicode character. For example, suppose your document
loads a package that provides symbols for use on maps, such as \Harbour, \Battlefield
and \Stadium, then you can provide versions of these commands just for bib2gls’s use:*

@preamble{"\providecommand{\Harbour}{\char"2693}
\providecommand{\Battlefield}{\char"2694}
\providecommand{\Stadium}{\char"26BD}"}

Since these use \providecommand, they won’t overwrite the document’s version (provided
these commands have been defined before \GlsXtrLoadResources). Alternatively, you
can instruct bib2gls to not write the @preamble contents to the resource file using write
-preamble={false}. Now you can either sort these symbols by their Unicode values (sort
={letter-casel}) or provide a custom rule that recognises these Unicode characters (for ex-
ample, sort={custom}, sort-rule={\glshex2694 < \glshex2693 < \glshex26BD}).

Another approach is to use \IfTeXParserLib, which is defined by the TgX Parser Library
to expand to its first argument. The glossaries—extra-bib2gls package provides a definition
that expands to its second argument, so that command may be used to provide alternative
code. For example:

Opreamble{"\providecommand{\Ord} [1]{%
\IfTeXParserLib

>These commands won’t work with PDFKIEX, as the \char values are too large, but they’re fine for bib2gls.

25

2 TgX Parser Library

Table 2.1: Glossary-Related Commands Implemented by the bib2gls Interpreter

\bibglsampersandchar
\bibglscontributorlist
\bibglsdollarchar
\bibglshyperlink
\bibglstitlecase
\glsbackslash
\Glsentryfirst
\glsentrylong
\Glsentrylongpl
\glsentryplural
\Glsentryshort
\glsentrysymbol
\Glsentrysymbolplural
\glsentrytitlecase
\glsentryuserii
\Glsentryuseriii
\glsentryuserv
\Glsentryuservi
\glspercentchar
\glsxtrhiername
\GLSxtrhiername
\glsxtrprovidecommand
\GLSxtrusefield

\bibglscircumchar
\bibglsdate
\bibglsfirstuc
\bibglslowercase
\bibglsunderscorechar
\glsclosebrace
\glsentryfirstplural
\Glsentrylong
\glsentryname
\Glsentryplural
\glsentryshortpl
\Glsentrysymbol
\glsentrytext
\glsentryuseri
\Glsentryuserii
\glsentryuseriv
\Glsentryuserv
\glshyperlink
\glstildechar
\Glsxtrhiername
\GLSXTRhiername
\glsxtrusefield

26

\bibglscontributor
\bibglsdatetime
\bibglshashchar
\bibglstime
\bibglsuppercase
\glsentryfirst
\Glsentryfirstplural
\glsentrylongpl
\Glsentryname
\glsentryshort
\Glsentryshortpl
\glsentrysymbolplural
\Glsentrytext
\Glsentryuseri
\glsentryuseriii
\Glsentryuseriv
\glsentryuservi
\glsopenbrace

\GlsXtrEnableInitialTagging

\GlsXtrhiername
\glsxtrhiernamesep
\Glsxtrusefield

2 TgX Parser Library

{\bibglspaddigits{2}{#1}}), interpreter
{\MakeUppercase{\romannumeral #1}}J, document

'}

O@index{John-1IV,

name={John~\0rd{4}}

}

©@index{John-VI,

name={John~\0rd{6}}

}

Oindex{John-IX,

name={John~\0rd{9}}

+

@index{John-XII,

name={John~\0rd{12}}

}

The sort values for these entries will be: “John 04”, “John 06, “John 09” and “John 12”, but in
the document text they will be typeset as “John IV”, “John VI”, “John IX” and “John XII”. Note
that \bibglspaddigits is only recognised by the bib2gls interpreter. Alternatively, you
can use the sort-number-pad option to pad the numbers (or use \dtlpadleadingzeros
which is also recognised by the TgX Parser Library and datatool-base v3.0+).

There is a similar command with reversed syntax \IfNotBibGls, which is defined by
glossaries—extra-bib2gls to expand to its first argument. The bib2gls interpreter defines
this command to expand to its second argument.

TgX syntax can be quite complicated and, in some cases, far too complicated for simple
regular expressions. The TgX Parser Library performs better than a simple pattern match, and
that’s the purpose of texparserlib. jar and why it’s used by bib2gls (and by convert-
gls2bib). When the --debug mode is on, any warnings or errors triggered by the interpreter
will be written to the transcript prefixed with texparserlib: (the results of the conversions
will be included in the transcript as informational messages prefixed with texparserlib:
even with —-no-debug).

For example, suppose the .bib file includes:

@preambleq

"\providecommand{\mtx} [1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}"}

Qentry{M,
name={{}\mtx{M}},
text={\mtx{M}},
description={a matrix}

}

27

2 TgX Parser Library

Q@entry{v,
name={{}\vec{v}},
text={\vec{v}},
description={a vector}

}

Qentry{s,
name={{}\set{S}},
text={\set{S}},
description={a set}

3

@entry{card,

name={{}\card{S}},

text={\card{S}},

description={the cardinality of the set \set{S}}
}

Qentry{i,
name={{}\imaginary},
text={\imaginary},
description={square root of minus one ($\sqrt{-1}$)}

}

(The empty group at the start of the name fields protects against the possibility that the gloss-
name category attribute might be set to firstuc, which automatically converts the first letter
of the name to upper case when displaying the glossary. See also ~-mfirstuc-protection
and --mfirstuc-math-protection.)

None of these entries have a sort field so the name is used (see section 5.8). If the entry
type had been @symbol instead, the fallback would be the entry’s label. This means that with
@symbol instead of @entry, and the default sort-field={sort}, and with sort={letter—
casel, these entries will be defined in the order: M, S, card, i, v (since this is the case-
sensitive letter order of the labels) whereas with sort-field={letter-nocase}, the order
will be: card, i, M, S, v (since this is the case-insensitive letter order of the labels).

However, with Gentry, the fallback field will be taken from the name which in the above
example contains TgX code, so bib2gls will use texparserlib. jar to interpret this code.
The library has several different ways of writing the processed code. For simplicity, bib2gls
uses the library’s HTML output and then strips the HTML markup and trims any leading
or trailing spaces. The library method that writes non-ASCII characters using “&x(hex); ”
markup is overridden by bib2gls to just write the actual Unicode character, which means
that the letter-based sorting options will sort according to the integer value (hex) rather than
the string “ &x(hex) ; ”.

The interpreter is first passed the code provided with @preamble:

\providecommand{\mtx}[1]{\boldsymbol{#1}}

28

2 TgX Parser Library

\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card} [1]{|\set{#1}|}
\providecommand{\imaginary}{i}

(unless interpret-preamble={false}). This means that the provided commands are now
recognised by the interpreter when it has to parse the fields later.

In the case of the M entry in the example above, the code that’s passed to the interpreter
is:

{3\mtx{M}
The transcript (.glg) file will show the results of the conversion:
texparserlib: {}\mtx{M} -> M

So the sort value for this entry is set to “M”. The font change (caused by math-mode and
\boldsymbol) has been ignored. The sort value therefore consists of a single Unicode char-
acter 0x4D (Latin upper case letter “M”, decimal value 77).

For the v entry, the code is:

{}\vec{v}
The transcript shows:
texparserlib: {}\vec{v} —> v

So the sort value for this entry is set to “ v ”, which consists of two Unicode characters 0x76
(Latin lower case letter “v”, decimal value 118) and 0x20D7 (combining right arrow above,
decimal value 8407).

For the set entry, the code is:

{}\set{S}
The transcript shows:
texparserlib: {}\set{S} -> S

So the sort value for this entry is set to “ S ” (again ignoring the font change). This consists
of a single Unicode character 0x53 (Latin upper case letter “S”, decimal value 83).
For the card entry, the code is:

{}\card{S}

The transcript shows:

texparserlib: {}\card{S} -> [S|

29

2 TgX Parser Library

So the sort value for this entry is set to “ | S| ” (the | characters from the definition of \card
provided in @preamble have been included, but the font change has been discarded). In this
case the sort value consists of three Unicode characters 0x7C (vertical line, decimal value
124), 0x53 (Latin upper case letter “S”, decimal value 83) and 0x7C again. If interpret
-preamble={false} had been used, \card wouldn’t be recognised and would be discarded
leaving just “S” as the sort value.

(Note that if \vert is used instead of | then it would be converted into the mathematical
operator 0x2223 and result in a different order.)

For the i entry, the code is:

{}\imaginary
The transcript shows:
texparserlib: {}\imaginary -> i

So the sort value for this entry is set to “i”. If interpret-preamble={false} had been
used, \imaginary wouldn’t be recognised and would be discarded, leaving an empty sort
value.

This means that in the case of the default sort-field={sort} with sort={letter-
casel, these entries will be defined in the order: M (M), S (S), i (7), v (¥) and card (|S|). In
this case, the entries have been sorted according to the character codes. If you run bib2gls
with --verbose the decimal character codes will be included in the transcript. For this ex-
ample:

i-> 'i' [105]

card -> '[|S|' [124 83 124]
Mo-> ‘M [77]

S -> 's' [83]

v => 'v' [118 8407]

The --group option (in addition to --verbose) will place the letter group in parentheses
before the character code list:

i->'i' (i) [108]
card -> '[|S|"' [124 83 124]
M->'M'" (M) [77]
S —> 's' (S) [83]
v => 'v' (v) [118 8407]
(Note that the card entry doesn’t have a letter group since the vertical bar character isn’t
considered a letter.)

If sort={letter-nocase} is used instead then, after conversion by the interpreter, the
sort values will all be changed to lower case. The order is now: i (i), M (M), S (S), v (v) and
card (|S|). The transcript (with --verbose) now shows

30

2 TgX Parser Library

i -> 'i' [105]
card -> '[|s|' [124 115 124]
M -> 'm' [109]
S -> 's' [115]

v => 'v' [118 8407]

With --group (in addition to —-verbose) the letter groups are again included:

i -> 'i' (I) [105]

card -> '[s|' [124 115 124]
M -> 'm'" (M) [109]

S —> 's' (8) [115]

v -> 'v' (V) [118 8407]

Note that the letter groups are upper case not lower case. Again the card entry doesn’t have
an associated letter group.

If a locale-based sort is used, the ordering will follow the locale’s alphabet rules. For
example, with sort={en} (English, no region or variant), the order becomes: card (|S|), i
(2), M (M), S (S) and v (V). The transcript (with ——verbose) shows the collation keys instead:

i->"'i'" [092 0 0 0 0]

card -> '[|S|' [0 66 0 102 0 66 0 0 0 O]

M->'M" [096 00 0 0]

S ->"'S'" [0 102 0 0 0 0]

v -> 'v' [0 105 0 0 0 0]

Again the addition of the ——group switch will show the letter groups.*
Suppose I add a new symbol to my .bib file:

@symbol{angstrom,
name={\AA},
description={\AA ngstr\"om}
}

and I also use this entry in the document.” Then with sort={en}, the order is: card (|S]),
angstrom (A), i (i), M (M), S (S), and v (7). The --group switch shows that the angstrom
entry (A) has been placed in the “A” letter group.

However, if I change the locale to sort={sv}, the angstrom entry is moved to the end of
the list and the ——group switch shows that it’s been placed in the “A” letter group.

If you are using Java 8, you can set the java.locale.providers property [8] to use the
Unicode Common Locale Data Repository (CLDR) locale provider, which has more extensive
support for locales than the native JrRe. For example:

java.locale.providers=CLDR, JRE

“For more information on collation keys see the CollationKey class in Java’s API [2].
> A better method is to use siunitx instead.

31

http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html

2 TgX Parser Library

This should be enabled by default for Java 9. The property can either be set in a script that
runs bib2gls, for example,

java -Djava.locale.providers=CLDR,JRE,SPI -jar "$jarpath" "$a@"

(where $jarpath is the path to the bib2gls. jar file and "$@" is the argument list) or you
can set the property as the default for all Java applications by adding the definition to the
JAVA_TOOL_OPTIONS environment variable [9]. For example, in a bash shell:

export JAVA_TOOL_OPTIONS='-Djava.locale.providers=CLDR, JRE,SPI'
or in Windows:
set JAVA_TOOL_OPTIONS=-Djava.locale.providers=CLDR, JRE,SPI

Note that newer versions of Java support cLDR by default, and the JRE synonym for the
COMPAT provider is now deprecated.®

Chttps://www.oracle.com/java/technologies/javase/jdk21-suported-locales.html

32

3 Command Line Options

The syntax of bib2gls is:
bib2gls [(options)] (filename)

where (filename) is the name of the .aux file. (The extension may be omitted.) Only one
(filename) is permitted. Available options are listed below.

If you are using an automated build system that makes it difficult to change the command
line options and you have at least version 1.54 of glossaries-extra and at least version 4.0 of
bib2gls, then most (but not all) switches can be specified within the argument of

\BibGlsOptions{(options)}

This command may be placed anywhere within the preamble, but the options will always
be processed before the resource commands. This command may be used multiple times.
Unlike the resource options, which are local to the resource set, the options described here
are global and are applied to all resource sets, where applicable. For example:

\BibGlsOptions{replace-quotes=true}
\GlsXtrLoadResources
\BibGlsOptions{collapse-same-location-range=true}

This is equivalent to:

\BibGlsOptions{replace-quotes=true,collapse-same-location-range=true}
\GlsXtrLoadResources

The (options) list should be a key=value list where the (key) is the same as the long switch
without the preceding -- and any --no-(option) should be specified as (option)=false
within \BibGlsOptions. For example, to set global options via the command line:

bib2gls --group --no-replace-quotes myDoc

Alternatively, the document may contain:
\BibGlsOptions{group=true,replace-quotes=false}

You can omit the value if it is true, so the above can also be written:

\BibGlsOptions{group,replace-quotes=false}

Options that must be set before the .1og and . aux file are read can only be set via the
command line switch.

33

3.1 Common Options

3.1 Common Options

These command line switches are common to bib2gls and the supplementary command
line conversion tools

--help (or -h)

Display the help message and quit. This option cannot be set in \BibG1lsOptions.

--version (or -v)

Display the version information and quit. As from v2.5, this now includes the version number
of the texparserlib. jar library. This option cannot be set in \BibGlsOptions.

--verbose

Switches on the verbose mode. This writes extra information to the terminal and transcript
file. This option cannot be set in \BibGlsOptions.

--no-verbose (or --noverbose)

Switches off the verbose mode. This is the default behaviour. Some messages are written to
the terminal. To completely suppress all messages (except errors), switch on the silent mode.
For additional information messages, switch on the verbose mode. This option cannot be set
in \BibGlsOptions.

--quiet (or -q)

Suppresses all messages except for errors that would normally be written to the terminal.
Warnings and informational messages are written to the transcript file, which can be in-
spected afterwards. This option cannot be set in \BibGlsOptions.

--silent

Synonym of --quiet. This option cannot be set in \BibGlsOptions.

--locale (lang) (or -1 (lang))

Specify the preferred language resource file, where (lang) is a valid 1ETF language tag. This
option requires an appropriate bib2gls-(lang).xml resource file otherwise bib2gls will
fallback on English. This also sets the default document locale when the doc keyword (in
options such as sort={doc}) is used and the document doesn’t have any language support.
Note that the 1ocale keyword (in options such as sort={1locale}) uses the Java locale and
is not governed by this switch. This option cannot be set in \BibGlsOptions.

34

3.1 Common Options

If a document doesn’t have any locale support or has support for more than one language
then it’s best to explicitly set the required locale in the appropriate resource set using the
locale resource option, to specify the default resource locale, or set the locale for individual
options, such as sort.

~—debug [(n)]

Sometimes when things go wrong it can be hard to diagnose the problem from the normal
messages. If you report an issue, you may be asked to switch on debugging mode to help
identify a non-reproducible error and provide the transcript file.

The --debug optional value can be used to adjust the level of debugging information. If
(n) is present, it must be a non-negative integer indicating the debugging mode. If omitted,
1 is assumed. This option also switches on the verbose mode. A value of 0 is equivalent to
--no-debug. This option cannot be set in \BibGlsOptions.

The value of (n) determines how much extra information is provided. If (n) is greater than
0 then all bib2gls debugging information is written. The amount of debugging information
provided by the TgX Parser Library is determined by a bitwise operation on (n). For example,
if (n) is 1 then I/O information is included. If (n) is 2 then information is included when an
object is popped off a stack. If (n) is 3 then both I/O and popped information is provided.

Note that messages such as “Can’t find language resource” or about a failed kpsewhich
call are informational and don’t necessarily mean an error has occurred. Error messages will
always be written to the transcript regardless of the debug or verbose setting. An error mes-
sage will start with “Error: ” and a warning message will start with “Warning: ”. Unknown
commands will throw an exception with a stack trace in debug mode.

--debug-mode (setting)

This option is an alternative to -~—debug where the value of (n) needs to be calculated. This
option cannot be set in \BibGlsOptions. Debugging mode requires a transcript file, which
is automatically created with bib2gls, but is optional for the converter tools (see chapter 7).
The (setting) is required and should be a comma-separated list of any of the following key-
words.

all: enable all debugging information (likely to result in a very large transcript file).
« catcode: TgX Parser Library category code changes.

« cs: TgX Parser Library command definitions.

+ decl: information about declarations.

« expansion: TgX Parser Library expansions (may result in a large transcript file).

« expansion-list: TgX Parser Library stack expansions (may result in a large transcript
file).

35

3.2 File Options

expansion-once: TgX Parser Library one-level expansions (may result in a large tran-
script file).

expansion-once-1list: TgX Parser Library one-level list expansions (may result in a
large transcript file).

io: I/O information, such as opening or closing files and fetching tokens.
popped: information about objects popped from stacks.

process: TgX Parser Library macro process (may result in a large transcript file).
process-generic-cs: TgX Parser Library generic command process.

process-stack: TgX Parser Library stack process (may result in a large transcript
file).

process-stack-1list: TgX Parser Library stack process with list detail (may result in
a large transcript file).

read: TgX Parser Library file codepoint read (likely to result in a very large transcript
file).

settings: TgX Parser Library settings information.

sty-data: data associated with packages used to store information that may not ex-
actly correspond to the way the information is stored in BKIEX. In the case of bib2gls,
this will typically just be data read from recognised .aux commands.

For example:

bib2gls --debug-mode catcode,sty-data (filename)

--no-debug (or --nodebug)

Switches off the debugging mode. This option cannot be set in \BibGlsOptions.

3.2 File Options

--aux-input-action (setting)

Determines what bib2gls should do if it encounters \@input in the .aux file. The (setting)
may be one of the following:

follow follow the reference (that is, input the file).

skip after bibglsaux follow the reference until \@bibgls@input is encountered, after

which skip all remaining instances of \@input (default). If there is no bibglsaux file,
this setting is no different from follow.

36

3.2 File Options

skip-after-bibglsaux synonym of skip after bibglsaux.

skip skip the reference. Be careful with this setting if you haven’t used bibglsaux or \gls-
xtrsetbibglsaux as you may cause bib2gls to miss records. However, if you are
using selection={all} and you’re not interested in locations then this might help
speed up bib2gls’s processing time.

This setting is designed to work with glossaries-extra’s bibglsaux package option or with
\glsxtrsetbibglsaux{(basename)}

which does the same thing. This specifies a special .aux file containing the records that
bib2gls will read but EIEX will skip. The reference will be written to the .aux file with

\@bibgls@input{(filename)}

which is defined by glossaries-extra to simply ignore its argument but bib2gls will input the
file (regardless of the ——aux-input-action setting).

Since the bibglsaux file contains all records and is typically written to the .aux file after
all the commands that bib2gls is interested in, it’s unlikely that the additional .aux files
(created by \include) will be of any interest to bib2gls. Therefore the default setting is to
ignore all \@input after \@bibgls@input.

--dir (dirname) (or -d (dirname))

This option cannot be set in \BibGlsOptions.

By default bib2gls assumes that the output files should be written in the current working
directory. The input . bib files are assumed to be either in the current working directory or
on TgX’s path (in which case kpsewhich will be used to find them).

If your .aux file isn’t in the current working directory (for example, you have run TgX
with —output-directory) then you need to take care how you invoke bib2gls.

Suppose I have a file called test-entries.bib that contains my entry definitions and a
document called mydoc. tex that selects the . bib file using:

\GlsXtrLoadResources[src={test-entries}]

(test-entries.bib is in the same directory as mydoc.tex). If I compile this document
using

pdflatex -output-directory tmp mydoc

then the auxiliary file mydoc.aux will be written to the tmp sub-directory. The resource
information is listed in the . aux file as

\glsxtr@resource{src={test-entries}}{mydoc}

IfIrun bib2gls from the tmp directory, then it won’t be able to find the test-entries.bib
file (since it’s in the parent directory).
If I run bib2gls from the same directory as mydoc.tex using

37

3.2 File Options

bib2gls tmp/mydoc

then the .aux file is found and the transcript file is tmp/mydoc.glg (since the default path
name is the same as the . aux file but with the extension changed to .glg) but the output file
mydoc.glstex will be written to the current directory.

This works fine from TgX’s point of view as it can find the . glstex file, but it may be that
you’d rather the . glstex file was tidied away into the tmp directory along with all the other
files. In this case you need to invoke bib2gls with the --dir or -d option:

bib2gls -d tmp mydoc

--log-file (filename) (or -t (filename))

Sets the name of the bib2gls transcript file. By default, the name is the same as the .aux
file but with a . glg extension. Note that if you use bib2gls in combination with xindy or
makeindex, you will need to change the transcript file name to prevent conflict. This option
cannot be set in \BibGlsOptions.

The transcript file encoding is governed by --log-encoding.

--tex-encoding (name)

This option cannot be set in \BibGlsOptions.

In general, it’s best to have all your files (.aux, .bib and .glstex) in the same encoding
that matches your default encoding (see section 1.1). However, if your .aux and .glstex
files have a different encoding to your default, you can use --tex-encoding to specify the
TgX encoding. If omitted the default encoding is used. See section 1.1.

Note that bib2gls will try to detect the document encoding from the .aux file to ensure
that the . glstex files match it. However, at that point, it’s too late to establish the encoding
of the .aux file, which has already been opened. So if the . aux file encoding doesn’t match
the default encoding, you can specify the correct encoding to use with —-tex-encoding.

If you are using fontspec, bib2gls can detect this from the .1log file instead and will
assume UTF-8.

--log-encoding (name)

The encoding of the .1log file. If omitted, the default encoding will be used. See section 1.1.
(Note that the .1log file may not have the same encoding as the . tex file [17].) This option
cannot be set in \BibGlsOptions.

--default-encoding (name)

The default encoding used by bib2gls to read and write files is governed by the jvm. This
typically matches your operating system’s default encoding. If this is incorrect, you can ei-
ther globally change the encoding for the jvm, which will affect all Java applications installed
on your device, or you can use -—default-encoding just to set the default for bib2gls. See
section 1.1. This option cannot be set in \BibGlsOptions.

38

3.3 Interpreter Options

--date-in-header (or -D)

The comment header block at the start of the . glstex files will include the file modification
date in the first line (after the version information). This setting can interfere with the doc-
ument build process or version control if you are testing for file differences rather than file
modification dates when only the timestamp changes.

—--no-date-in-header

The comment header block at the start of the . glstex files won’t include the file modification
date (default). If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{date-in-header=false}

3.3 Interpreter Options

--break-space

The interpreter treats a tilde character ~ as a normal space. Similarly \nobreakspace just
produces a space.

--no-break-space

The interpreter treats a tilde character ~ as a non-breakable space (default). Similarly the
interpreter will define \nobreakspace to produce a non-breakable space character (0x00A0).
If used in \BibG1lsOptions, this option should be specified as

\BibGlsOptions{break-space=false}

--custom-packages (list)

Instruct the interpreter to parse the package files identified in (list). The package files need
to be quite simple. When this switch is used, the interpreter can recognise \ProvidesPack-
age, \DeclareOptions (and \DeclareOptionsx*), \ProcessOptions, \PackageError and
\RequirePackage, but it can’t deal with complicated code. In the case of \RequirePack-
age, support will also be governed by --custom-packages. This option has a cumulative
action.

Multiple instances of this switch can occur on the command line. If used in \BibGls-
Options, the nature of the key=value list parser means that multiple instances within the
same option list will override each other. Instead, you will need a comma-separated list as
the argument. For example, from the command line:

bib2gls --custom-packages 'pkgl,pkg2,pkg3' myDoc

This is equivalent to:

39

3.3 Interpreter Options

bib2gls --custom-packages pkgl --custom-packages pkg2 --custom-packages pkg3 myDoc
Alternatively, within the document:

\BibGlsOptions{custom-packages={pkgl,pkg2,pkg3}}

-—-datatool-sort-markers

The datatool-base package provides some marker commands designed for use with \DTL-
sortwordlist: \datatoolasciistart, \datatoolpersoncomma, \datatoolplacecomnma,
\datatoolsubjectcomma, \datatoolparenstart, \datatoolctrlboundary, \datatool-
asciiend, and \datatoolparen. These commands by default will be defined by the inter-
preter to match their normal datatool-base behaviour (see the datatool documentation for
further details). Additionally, \dt1ltexorsort will be redefined to expand to its first argu-
ment.

Note that you don’t need to request the datatool-base package, unless you require support
for other commands provided by that package.

The --datatool-sort-markers switch will instead define these commands to match
their localised definitions within \DTLsortwordlist. This means that \dt1texorsort will
be defined to expand to its second argument and the marker commands will expand to con-
tent that includes special control codes. Note that language-sensitive sort methods typically
ignore control codes, so these would either need to be used with a character-code comparator
or a custom sort method would need to be used. For example:

sort-rule={\glsxtrcontrollIrules
;\glshex O

;\glsxtrspacerules

; \glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules
,\glsxtrhyphenrules
<\glsxtrcontrolIIrules
<\glsxtrgeneralpuncrules
<\glsxtrdigitrules
<\glsxtrfractionrules
<\glsxtrGenerallLatinIrules
<\glshex T7F

Instead of \dt1ltexorsort (which varies according to this setting), you may prefer to use
\IfTeXParserLib or \IfNotBibG1ls.

--no-datatool-sort-markers

Define the datatool-base marker commands (including \dt1ltexorsort) to match their nor-
mal definition.

40

3.3 Interpreter Options

--ignore-packages (list) (or -k (list))

This option is cumulative. When the document .1log file is parsed for known packages,
bib2gls will skip the check for any listed in (list). Note that this option simply instructs
bib2gls to ignore the package information in the log file. Any packages that are identified
with --packages will be passed to the interpreter if support is available, even if the package
is also listed in --ignore-packages. Note that unknown packages can’t be included in the
ignored (list). This option cannot be set in \BibGlsOptions.

--interpret

Switch on the interpreter mode (default). See chapter 2 for more details.

--no-interpret

Switch off the interpreter mode. See chapter 2 for more details about the interpreter. If used
in \BibG1lsOptions, this option should be specified as

\BibGlsOptions{interpret=false}

--list-known-packages

This option will list all the packages supported by the TgX Parser Library and will then exit
bib2gls. This option cannot be set in \BibGlsOptions.

The results are divided into two sections: those packages that are searched for in the .1log
file and those packages that aren’t searched for in the . log file but have some support avail-
able. Some of the support is very limited. Package options aren’t detected. The transcript file
is always searched for glossaries-extra to ensure that the version is new enough to support
bib2gls.

Packages that fall into the first category are: amsmath, amssymb, bpchem, fontenc, font-
spec, fourier, hyperref, lipsum, MnSymbol, mhchem, natbib, pifont, siunitx (limited), stix, text-
case, textcomp, tipa, upgreek and wasysym. (You can omit checking for specific packages with
--ignore-packages.) These are packages that provide commands that might be needed
within entry fields. The check for fontspec is to simply determine whether or not UTF-8
characters are allowed in labels (for 1abelify and labelify-1list). (Now that there is
better support for UTF-8 with pdfEIgX, UTF-8 characters will be allowed in labels if the
detected versions of glossaries and glossaries-extra are new enough, but note that you will
also need a relatively new BIEX kernel as well.)

Packages that fall into the second category are: booktabs, color, datatool-base (very lim-
ited), datatool (very limited), etoolbox (very limited), graphics, graphicx, ifthen, jmlrutils,
mfirstuc-english, probsoln, shortvrb, and xspace. These are less likely to be needed within
fields and so aren’t checked for by default. If they are needed then you can instruct bib2gls
to support them with --packages.

Note that mfirstuc is always automatically loaded, but mfirstuc-english is not implemented
unless explicitly requested with --packages mfirstuc-english.

41

3.3 Interpreter Options

If you’re wondering about the selection, the texparserlib. jar library was originally
written for another application that required support for some of them.

--packages (list) (or -p (list))

Instruct the interpreter to assume the packages listed in (list) have been used by the docu-
ment. This option has a cumulative action so --packages "wasysym,pifont" is the same
as ——packages wasysym --packages pifont.

This option may also be used in \BibGlsOptions but, as with --custom-packages, mul-
tiple instances of the packages key in the same option list will override each other.

Note that there’s only a limited number of packages supported by the TgX Parser Library.
This option is provided for cases where you’re using a command from a package that the
interpreter doesn’t support but it happens to have the same name and meaning as a command
from a package that the interpreter does support. You can also use it to provide support for
known packages that aren’t checked for when the .1log file is parsed. If you want bib2gls
to parse an unsupported package use -~-custom-packages.

—--support-unicode-script

Text superscript (\textsuperscript) and subscript (\textsubscript) will use Unicode
super/subscript characters if available (default). For example,

(2)

will be converted to ‘», which consists of: 0x207D (superscript left parenthesis) 0x00B2 (su-
perscript two) 0x207E (superscript right parenthesis). If the entire contents of the argument
can’t be represented by Unicode characters, the interpreter uses <sup> and <sub> markup,
which is then stripped by bib2gls. For example,

(2,3)
will be converted to
^(2,3)

(since there’s no superscript comma). The markup is stripped leaving just (2,3).

Superscripts and subscripts in maths mode always use markup regardless of this setting.
Some supported packages that use ~ or _ as shortcuts within an encapsulating command
may internally use the same code as \textsuperscript and \textsubscript, in which
case they will be sensitive to this setting.

--no-support-unicode-script

Text superscript (\textsuperscript) and subscript (\textsubscript) won’t use Unicode
super/subscript characters. Note that if other commands are provided that expand to Unicode
superscript or subscript characters, then they won’t be affected by this setting. For example,
if \superiortwo is defined as

42

3.4 Record Options

\providecommand{\superiortwo}{\char"B2}

then it will be interpreted as 0x00B2 (superscript two) even if this setting is on.
If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{support-unicode-script=false}

--obey-aux-catcode

By default, the .aux parser ignores category code changing commands. This option will
instruct the parser to implement the category code, but note that it can only do this for
known commands that the parser is able to implement. This option cannot be set in \Bib-
GlsOptions.

--no-obey-aux-catcode

Instructs the . aux parser to ignore category code changing commands. (Default.) This option
cannot be set in \BibGlsOptions.

3.4 Record Options

-—-cite—-as-record

Treat instances of \citation{(label)} found in the .aux file as though it was actually an
ignored record:

\glsxtr@record{(label)}{}{page}{glsignore}{}

Note that \citation{*} will always be skipped. Use selection={all} to select all entries.
This switch is most useful in conjunction with @bibtexentry (page 110).

--no-cite—as-record

Don’t check for instances of \citation in the .aux file (default). If used in \BibGls-
Options, this option should be specified as

\BibGlsOptions{cite-as-record=false}

--collapse-same-location-range

Collapse any explicit range into a normal record if the start and end locations are the same
(default). This record will be treated as a normal location that can be merged with neigh-
bouring locations, regardless of merge-ranges.

43

3.4 Record Options

--no-collapse-same-location-range

Don’t collapse any explicit range into a normal record if the start and end locations are the
same. The explicit range will only be able to merge with neighbouring locations if merge
-ranges={true}. If used in \BibG1lsOptions, this option should be specified as

\BibGlsOptions{collapse-same-location-range=false}

--map-format (map:value list) (or -m (map:value list))

This sets up the rule of precedence for partial location matches (see section 5.10). The ar-
gument may be a comma-separated list of (map) : (value) pairs. Alternatively, you can have
multiple instances of --map-format (map) : (value) which have a cumulative effect on the
command line. You can also use map-format as an option within \BibGlsOptions, but
multiple instances of this key in the same option list will override each other.

For example,

bib2gls --map-format "emph:hyperbf" mydoc

This essentially means that if there’s a record conflict involving emph, try replacing emph
with hyperbf and see if that resolves the conflict.

Note that if the conflict includes a range formation, the range takes precedence. The map-
ping tests are applied as the records are read. For example, suppose the records are listed in
the . aux file as:

\glsxtr@record{gls.sample}{}{page}{emph}{3}
\glsxtr@record{gls.sample}{}{page}t{hypersf}{3}
\glsxtr@record{gls.sample}{}{page}t{hyperbf}{3}

and bib2gls is invoked with

bib2gls --map-format "emph:hyperbf,hypersf:hyperit" mydoc

or

bib2gls --map-format emph:hyperbf --map-format hypersf:hyperit mydoc
then bib2gls will process these records as follows:

1. Accept the first record (emph) since there’s currently no conflict. (This is the first record
for page 3 for the entry given by gls.sample.)

2. The second record (hypersf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls consults the mappings provided
by --map-format.

+ The hypersf format (from the new record) is mapped to hyperit, so bib2gls
checks if the existing record has this format. In this case it doesn’t (the format is
emph). So bib2gls moves on to the next test:

44

3.4 Record Options

+ The emph format (from the existing record) is mapped to hyperbf, so bib2gls
checks if the new record has this format. In this case it doesn’t (the format is
hypersf).

Since the provided mappings haven’t resolved this conflict, the new record is
discarded with a warning. Note that there’s no look ahead to the next record.
(There may be other records for other entries also used on page 3 interspersed
between these records.)

3. The third record (hyperbf) conflicts with the existing record (emph). Neither has the
format gl snumberformat or glsignore so bib2gls again consults the mappings pro-
vided by --map-format.

+ The new record’s hyperbf format has no mapping provided, so bib2gls moves
on to the next test:

« The existing record’s emph format has a mapping provided (hyperbf). This matches
the new record’s format, so the new record takes precedence.

This means that the location list ends up with the hyperbf location for page 3.
If, on the other hand, the mappings are given as
-—-map-format "emph:hyperit,hypersf:hyperit,hyperbf :hyperit"

then all the three conflicting records (emph, hypersf and hyperbf) will end up being replaced
by a single record with hyperit as the format.

Multiple conflicts will typically be rare as there’s usually little reason for more than two
or three different location formats within the same list. (For example, glsnumberformat as
the default and hyperbf or hyperit for a principal location.)

--merge-nameref-on (rule)

The record={nameref} package option (introduced to glossaries-extra version 1.37) pro-
vides extra information in the record when indexing, obtained from \@currentlabelname,
\@currentHref and \theHentrycounter. Instead of writing the record as:

\glsxtrOrecord{(label) }{(prefix)}{{counter)}{{format)}{(location)}

the record is written as:

\glsxtr@record@nameref{(label) }{ (prefix)}{(counter) }{(format)}{(location) }{(title)}
{(href)}{(hcounter)}

If hyperref hasn’t been loaded (title) and (href) will always be empty. The most reliable
target is given by (counter) . (hcounter), where (counter) is the associated counter name and
(hcounter) is obtained from \theHentrycounter, which is set to the hyper target command
\theH(counter) during indexing. Since this information can’t be included in the location
when indexing with makeindex or xindy, the base glossaries package tries to obtain a prefix

45

3.4 Record Options

from which the target name can be formed. This doesn’t work if \theH(counter) can’t be
formed from (prefix)\the(counter), which results in broken links. Since bib2gls doesn’t
have the same restrictions, the actual target can be included in the record. You can then
customize the document to choose whether to use (href) (to link to the nearest anchor) or
(hcounter) to link to the place where the indexing counter was incremented.

The nameref record will be written to the location list using:

\glsxtrdisplaylocnameref{(prefix)}{(counter)}{(format)}{(location)}{(title)}
{(href) }{(hcounter)}{(file)}

The (file) part will be empty for normal internal locations, and will be set to the correspond-
ing file name for supplemental locations.

With hyperref, (title) is initially empty. The (href) will be Doc-Start at the start of the
document and is updated globally on every instance of \refstepcounter. The (title) is
updated locally by certain commands, such as \section or \caption. This means that the
(href) may not always correspond to the (title), so using the record={nameref} package
option can have unpredictable results if the (title) is used as link text with (href) as the
target.

For compactness, bib2gls tries to merge duplicate or near duplicate records. There are
four possible rules that it will use for nameref records, identified by (rule) in the --merge
-nameref-on switch:

+ location: merge records that match on the (prefix), (counter) and (location) parts (as
regular records);

« title: merge records that match on the (counter) and (title) parts;
« href: merge records that match on the (counter) and (href’) parts;
« hcounter: merge records that match on the (counter) and (hcounter) parts.

The default (rule) is hcounter. Note that for all rules the (counter) must match. See the
“Nameref Record” section of the glossaries-extra user manual for further details.

--merge-wrglossary-records

For use with the indexcounter package option (glossaries-extra v1.29+), this switch merges
an entry’s wrglossary records for the same page location. This is the default setting. (See also
save-index-counter.)

--no-merge-wrglossary-records

Don’t merge an entry’s wrglossary records. This means that you may end up with duplicate
page numbers in the entry’s location list, but they will link to different parts of the page. If
used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{merge-wrglossary-records=false}

46

3.4 Record Options

--record-count (or -c)

Switch on record counting. This will ensure that when each entry is written to the .glstex
file, bib2gls will additionally set the following fields

« recordcount: set to the total number of records found for the entry;

« recordcount. (counter): set to the total number of records found for the entry for the
given counter.

These fields can then be used with the \rgls-like commands.

This option is governed by the —-record-count-rule, which can be used to exclude
certain types of records from the count. The default rule is all, which includes all ignored
records.

The default behaviour of
\rgls [(options)]1{(label)} [{insert)]

is to check the recordcount field against the recordcount attribute value. This attribute can
be set with

\GlsXtrSetRecordCountAttribute{(category list) }{(value)}

where (category list) is a comma-separated list of category labels and (value) is a positive
integer. If the value of the recordcount field is greater than (value) then \rgls behaves
like \gls, otherwise it does

\rglsformat{(label)} [(insert)]

instead. If the use of \rglsformat is triggered in this way, then \rgls writes a record to the
.aux file with the format set to glstriggerrecordformat. This ensures that the record
count is correct on the next run, but the record isn’t added to the location list as bib2gls
recognises it as a special ignored record. Note that the entry will still appear in the usual
glossary unless you assign it to a different one with trigger-type.

If the recordcount attribute hasn’t been set \rgls behaves like \gls. (That is, \rgls uses
the same internal command used by \gls.) You can use \glsxtrenablerecordcount to
redefine \gls to \rgls, so that you can continue to use \gls without having to switch
command name.

For example:

\GlsXtrLoadResources[
src={abbrevs},’, entries defined in abbrevs.bib
trigger-type={ignored},
category={abbreviation}
]
\glsxtrenablerecordcount
\GlsXtrSetRecordCountAttribute{abbreviation}{1}

47

3.4 Record Options

See the glossaries-extra user manual [13] for further details.

Take care not to confuse the recordcount field with the indexed field. The indexed
field keeps a running total of the number of times an entry has been recorded so far,
and is updated every time the entry is indexed during the current KIgX run. The
recordcount field stores the total number of records obtained by bib2gls from the
.aux file.

--no-record-count

Switch off record counting. (Default.) If used in \BibGlsOptions, this option should be
specified as

\BibGlsOptions{record-count=false}

--record-count-unit (or -n)

Automatically implements —-record-count and additionally sets the recordcount . (counter) .
(location) fields. These fields can then be used with the \rgls-like commands. This option
is governed by --record-count-rule, to determine which records should be counted.

--no-record-count-unit

Switches off unit record counting. (Default.) Note that you need --no-record-count to
completely switch off record counting. If used in \BibGlsOptions, this option should be
specified as

\BibGlsOptions{record-count-unit=false}

--record-count-rule {rule} (or -r {rule})

Automatically implements —-record-count and sets the rule that determines which records
should contribute to the count. The (rule) may be one of:

« all or a: these keywords indicate that all records should be included in the count

(default).

» non-ignored or n: these keywords indicate that ignored records should be excluded
in the count.

« c/(regex)/: only records where the associated counter name matches the regular ex-
pression (regex) should be included in the count.

« f/(regex)/: only records where the associated format matches the regular expression
(regex) should be included in the count.

48

3.5 Bib File Options

« £/(format-regex)/c/{counter-regex)/{op): this combines the format and counter name
match. The trailing (op) is optional. If present, it should be one of the keywords: and
(boolean AND) or or (boolean OR). If omitted, and is assumed.

For example:
bib2gls --record-count-rule 'f/.*(bf|it)/c/(sub)?section/or' myDoc

This will only count records where the format matches the regular expression .*(bf|it)
(for example, hyperbf or hyperit) or the counter name matches section or subsection
(but not subsubsection, since the expressions are anchored).

This syntax doesn’t permit the use of the sequence /c/ appearing in the regular expres-
sions, but both the format and counter name are either control sequence names or are a
substring of a control sequence name, so they should typically just be alphabetical strings.

--retain-formats (list)

It’s possible that you may not want to lose certain location formats, even if it means hav-
ing duplicate locations. For example, if you want to move a principal location using save
-principal-locations={remove}. In which case, use this switch with a comma-separated
list of formats that should be retained. Note that exact duplicates will still be merged. This
switch has a cumulative effect.

Take care if you use this switch and you have an explicit range with coincident start and
end locations. If the principal record is between the start and end format markers then the
range can’t collapse to an ordinary record. (You may need to use merge-ranges={true}.)

--no-retain-formats

Normal location merging rules apply (default). If used in \BibGlsOptions, this option
should be specified as

\BibGlsOptions{retain-formats=false}

3.5 Bib File Options

--warn-non-bib-fields

If any internal fields are found in the . bib file, this setting will issue a warning as their use
can cause unexpected results. The fields checked for are those listed in Tables 4.5 and 4.6
with a few exceptions, notably type and sort. Ideally you shouldn’t need to use sort as
there should be an appropriate fallback set up to use if sort isn’t set, such as the label for
symbols or the name for terms or the short form for abbreviations (see section 5.8).

This is the default setting and was added as some users were confused over which fields
could be used in the .bib file. The use of these fields can break bib2gls’s normal behaviour
and cause unexpected results.

49

3.6 Field Options

The check is performed before field aliasing, so it’s possible to alias a field to an internal
field, such as group, without triggering this warning. If you do this you need to make sure
you have taken appropriate precautions to avoid unexpected results.

--no-warn-non-bib-fields

Switches off the check for non-bib fields. If you use this option you need to make sure you
have taken appropriate precautions to avoid unexpected results. If used in \BibGlsOptions,
this option should be specified as

\BibGlsOptions{warn-non-bib-fields=false}

--warn-unknown-entry-types

If any unknown entry types are found in the .bib file, bib2gls will issue a warning with
this option set (default).

--no-warn-unknown-entry-types

This option will suppress the warning if an unknown entry types are found in the .bib file.
If used in \BibG1lsOptions, this option should be specified as

\BibGlsOptions{warn-unknown-entry-types=false}

3.6 Field Options

~—group (or -g)

The glossaries-extra record package option automatically creates a new internal field called
group. If the -—group switch is used with the default group={auto} option then, when
sorting, bib2gls will try to determine the group for each entry and assign it to the group
field. (Some sort options ignore this setting.) This value will be picked up by \print-
unsrtglossary if group headings are required (for example with the indexgroup style) or
if group separators are required (for example, the index style with the default nogroupskip
={false}). If you don’t require grouping within the glossary, there’s no need to use this
switch. Note that this switch doesn’t automatically select an appropriate glossary style.

If you want sub-groups, you will need to use the group-level resource option and en-
sure you have glossaries-extra v1.49+. Small groups can be merged with the merge-small
—groups resource option.

50

3.6 Field Options

The group field should typically not be set in the . bib file and will trigger a warning if
found. The explicit use of the group key will override bib2gls’s normal group forma-
tion behaviour, which can cause unexpected results. The custom use of the group field
requires some care. As a general rule, if you find yourself wanting to use the group
field in the .bib file, then the chances are that what you actually have is a hierarchi-
cal glossary (list of topics) and what you really need is the parent field. Compare the
example files sample-textsymbols.tex and sample-textsymbols2.tex. See also
section 1.3.

There are eight types of groups:

letter group The first non-ignored character of the sort value is alphabetic. This type of
group occurs when using the alphabetic sort methods listed in table 5.2 or with the
letter sort methods listed in table 5.3 or with the letter-number sort methods listed in
table 5.4. The group label is obtained from \bibglslettergroup.

non-letter group (or symbol group) The first non-ignored character of all the sort values
within this group are non-alphabetical. This type of group occurs when using the
alphabetic sort methods listed in table 5.2 or with the letter sort methods listed in
table 5.3 or with the letter-number sort methods listed in table 5.4. The alphabetic sort
methods ignore many punctuation characters, so an entry that has a non-alphabetic
initial character in the sort value may actually be placed in a letter group. The group
label is obtained from \bibglsothergroup.

empty group The sort value is empty when sorting with an alphabetical, letter or letter-
number method, typically a result of the original value consisting solely of commands
that bib2gls can’t interpret. The group label is obtained from \bibglsemptygroup.

number group The entries were sorted by one of the numeric comparisons listed in ta-
ble 5.5. The group label is obtained from \bibglsnumbergroup.

date-time group The entries were sorted by one of the date-time comparisons listed in
table 5.6 (where both date and time are present). The group label is obtained from
\bibglsdatetimegroup.

date group The entries were sorted by one of the date comparisons (where the time is omit-
ted). The group label is obtained from \bibglsdategroup.

time group The entries were sorted by one of the time comparisons (where the date is omit-
ted). The group label is obtained from \bibglstimegroup.

custom group The group label is explicitly set either by aliasing a field (with field-aliases)
or by using the group={(label)} resource option. You will need to use \glsxtrset-
grouptitle in the document to provide an associated title if the (label) isn’t the same
as the title. Remember that with older ETEX kernels, the label can’t contain any active
characters, so you can’t use non-ASCII characters in (label) with inputenc (but you

51

3.6 Field Options

can use non-ASCII alphanumerics with fontspec). To ensure better support for UTF-8
with pdfEIEX, make sure you have a recent TgX distribution and up-to-date versions
of glossaries and glossaries-extra.

The letter group titles will typically have the first character converted to upper case for
the alphabet sort methods (table 5.2). A “letter” may not necessarily be a single character
(depending on the sort rule), but may be composed of multiple characters, such as a digraph
(two characters) or trigraph (three characters).

For example, if the sort rule recognises the digraph “dz” as a letter, then it will be converted
to “Dz” for the group title. There are some exceptions to this. For example, the Dutch digraph

ij” should be “IJ” rather than “Ij”. This is indicated by the following line in the language
resource file:

<entry key="grouptitle.case.ij">IJ</entry>

If there isn’t a grouptitle.case. (lc) key (where (lc) is the lower case version), then only
the first character will be converted to upper case otherwise the value supplied by the re-
source file is used. This resource key is only checked for the alphabetical comparisons listed
in table 5.2. If the initial part of the sort value isn’t recognised as a letter according to the
sort rule, then the entry will be in a non-letter group (even if the character is alphabetical).

The letter (table 5.3) and letter-number (table 5.4) methods only select the first character
of the sort value for the group. If the character is alphabetical® then it will be a letter group
otherwise it’s a non-letter group. The case-insensitive ordering (such as sort={letter-
nocase}) will convert the letter group character to upper case. The case-sensitive ordering
(such as sort={letter-case}) won’t change the case.

Glossary styles with navigational links to groups (such as indexhypergroup) require an
extra run for the ordinary \makeglossaries and \makenoidxglossaries methods. For
example, for the document myDoc . tex:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
pdflatex myDoc

On the first pdflatex call, there’s no glossary. On the second pdflatex, there’s a glossary
but the glossary must be processed to find the group information, which is written to the
.aux file as

\@gls@hypergroup{(type)}{(group id)}

The third pdflatex reads this information and is then able to create the navigation links.
With bib2gls, if the type is provided (through the type field or via options such as type
and dual-type) then this information can be determined when bib2gls is ready to write
the . glstex file, which means that the extra EIEX run isn’t necessary. If bib2gls doesn’t
know the glossary type then it will fallback on the original method which requires an extra
KIEX run.
For example:

according to Java’s Character.isAlphabetic(int) method

52

3.6 Field Options

\documentclass{article}

\usepackage [colorlinks] {hyperref}

\usepackage [record,abbreviations,style={indexhypergroup}]{glossaries-
extra}

\GlsXtrLoadResources[src={entries},’ data in entries.bib
type={main}), put these entries in the 'main' glossary

]

\GlsXtrLoadResources[src={abbrvs},% data in abbrvs.bib
type={abbreviations}’ put entries in the 'abbreviations' glossary

]

Here the type is set and bib2gls can detect that hyperref has been loaded, so if the --group
switch is used, then the group hyperlinks can be set (using \bibglshypergroup). This
means that the build process is just:

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc

Note that this requires glossaries v4.53+ and glossaries-extra v1.53. If your version of glossaries
or glossaries-extra is too old, an extra KIgX run is required.

If hyperref isn’t loaded or the -—group switch isn’t used or the type isn’t set or your
version of glossaries is too old, then the information can’t be saved in the .glstex file.

For example:

\documentclass{article}

\usepackage [colorlinks] {hyperref}

\usepackage [record,abbreviations,style={indexhypergroup}]{glossaries-
extral

\GlsXtrLoadResources[src={entries}]), data in entries.bib
\GlsXtrLoadResources [src={abbrvs}]’) data in abbrvs.bib

This requires the build process:

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc
pdflatex myDoc

because the group hyperlink information can’t be determined by bib2gls, so it’s best to
always set the type if you want hyper-group styles, and make sure you have an up-to-date
version of glossaries (and glossaries-extra).

53

3.6 Field Options

—-no-group

Don’t automatically set the group field with group={auto} (default). The glossary won’t
have groups even if a group style, such as indexgroup, is used (unless the group field is set
to a custom value). If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{group=false}

--no-expand-fields

By default, \newglossaryentry and similar commands expand field values (except for name,
symbol and description). This is useful if constructing field values programmatically (for
example in a loop) but can cause a problem if certain fragile commands are included in the
field.

The switch --no-expand-fields makes bib2gls write \glsnoexpandfields to the
.glstex file, which switches off the expansion. Since bib2gls is simply fetching the data
from .bib files, it’s unlikely that this automatic expansion is required and since it can also
be problematic this option is on by default. You can switch it off with —-expand-fields.

If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{expand-fields=false}

--expand-fields

Don’t write \glsnoexpandfields to the .glstex file, allowing fields to expand when the
entries are defined. Remember that this doesn’t include the name, symbol or description
fields, which need to have their expansion switched on with \glssetexpandfield before
the entries are defined (that is, before using \GlsXtrLoadResources).

--mfirstuc-protection (list)|all (or -u (list)|all)

If you have mfirstuc v2.08+, glossaries v4.50+ and glossaries-extra v1.49+ then this setting
shouldn’t be required any more as there’s now better sentence case handling. If these ver-
sions are detected in the . 1og file then the default will switch to ——no-mfirstuc-protection
otherwise the default is ~—mfirstuc-protection. If this causes any problems, use ~—mfirstuc
-protection to re-enable this setting. The information below relates to older versions.

Commands like \G1s use \makefirstuc provided by the mfirstuc package. This command
has limitations and one of the things that can break it is the use of a referencing command
at the start of its argument. The glossaries-extra package has more detail about the problem
in the “Nested Links” section of the user manual [13]. If a glossary field starts with one of
these problematic commands, the recommended method (if the command can’t be replaced)
is to insert an empty group in front of it.

For example, the following definition

\newabbreviation{shtml}{shtml}{\glsps{ssi} enabled \glsps{short}{html}}

54

3.6 Field Options

will cause a problem for \Gls{shtml} on first use. The above example would be written in
a .bib file as:

O@abbreviation{shtml,

short={shtml},

long={\glsps{ssi} enabled \glsps{html}}
}

The default mfirstuc protection will automatically insert an empty group before \glsps
{ssi} when writing the definition in the .glstex file.

The argument for this switch should either be a comma-separated list of fields or the key-
word all (which indicates all fields). bib2gls will automatically insert an empty group at
the start of the listed fields that start with a problematic command, and a warning will be
written to the transcript. Unknown fields are skipped even if they’re included in the list. An
empty argument is equivalent to ——no-mfirstuc-protection. The default value is all.

--no-mfirstuc-protection

Switches off the mfirstuc protection mechanism described above. If used in \BibGlsOptions,
this option should be specified as

\BibGlsOptions{mfirstuc-protection=false}

--mfirstuc-math-protection

If you have mfirstuc v2.08+, glossaries v4.50+ and glossaries-extra v1.49+ then this setting
shouldn’t be required any more as there’s now better sentence case handling. If these ver-
sions are detected in the .log file then the default will switch to ——no-mfirstuc-math
—-protection. If this causes any problems, use -—-mfirstuc-math-protection to re-enable
this setting. The information below relates to older versions.

This setting works in the same way as ——mfirstuc-protection but guards against fields
starting with inline maths ($...$). For example, if the name field starts with x and the
glossary style automatically tries to convert the first letter of the name to upper case, then
this will cause a problem.

With --mfirstuc-math-protection set, bib2gls will automatically insert an empty

group at the start of the field and write a warning in the transcript. This setting is on by
default.

--no-mfirstuc-math-protection

Switches off the above. If used in \BibG1lsOptions, this option should be specified as

\BibGlsOptions{mfirstuc-math-protection=false}

55

3.6 Field Options

--nested-link-check (list)|none

By default, bib2gls will parse certain fields for potential nested links. (See the section
“Nested Links” in the glossaries-extra user manual [13].)

The default set of fields to check are: name, text, plural, first, firstplural, long,
longplural, short, shortplural and symbol.

You can change this set of fields using ~-nested-1link-check (value) where (value) may
be none (don’t parse any of the fields) or a comma-separated list of fields to be checked.

--no-nested-link-check

Equivalent to —~-nested-link-check none. If used in \BibG1ls0Options, this option should
be specified as

\BibGlsOptions{nested-link-check=none}
or

\BibGlsOptions{nested-link-check=false}

--shortcuts (value)

Some entries may reference another entry within a field, using commands like \gls, so
bib2gls parses the fields for these commands to determine dependent entries to allow them
to be selected even if they haven’t been used within the document. The shortcuts package
option provided by glossaries-extra defines various synonyms, such as \ac which is equiv-
alent to \gls. By default the value of the shortcuts option will be picked up by bib2gls
when parsing the .aux file. This then allows bib2gls to additionally search for those short-
cut commands while parsing the fields.

You can override the shortcuts setting using -—shortcuts (value) (where (value) may
take any of the allowed values for the shortcuts package option), but in general there is
little need to use this switch.

--trim-fields
Trim leading and trailing spaces from all field values. For example, if the . bib file contains:

Q@entry{sample,
name = {sample},
description = {

an example
}
}

This will cause spurious spaces in the description field. Using -—trim-fields will auto-
matically trim the values before writing the . glstex file.

56

3.7 Other Options

Note that even without this trimming option on, fields that are set as keys within \long-
newglossaryentry or the optional argument of \newabbreviation will automatically have
the leading and trailing spaces internally trimmed by the xkeyval package, so this trimming
action only affects fields that aren’t set in this way, such as the description, long and
short fields. If you specifically require a space at the start or end of a field then use a spac-
ing command, such as \, or \space or ~.

--trim-only-fields (list)

Only trim leading and trailing spaces from the fields identified in the comma-separated (list).
This option has a cumulative effect but is cancelled by —~—no-trim-fields (which switches
off all trimming) and by --trim-fields (which switches on trimming for all fields). This
option may not be used with --trim-except-fields.

For example, to only trim the description field:

bib2gls --trim-only-fields description myDoc

--trim-except-fields (list)

Trim all leading and trailing spaces from fields except those identified in the comma-separated

(list). This option has a cumulative effect but is cancelled by --no-trim-fields (which

switches off all trimming) and by ——trim-fields (which switches on trimming for all fields).

This option may not be used with -—trim-only-fields. See the above note about xkeyval.
For example, to trim all fields except short and long:

bib2gls --trim-except-fields short,long myDoc
Or

bib2gls --trim-except-fields short --trim-except-fields long myDoc

--no-trim-fields

Don’t trim any leading or trailing spaces from field values (but see the above note about xkey-
val). This is the default setting. If used in \BibGlsOptions, this option should be specified
as

\BibGlsOptions{trim-fields=false}

3.7 Other Options

--force-cross-resource-refs (or -x)

Force cross-resource reference mode on (see section 1.5).

57

3.7 Other Options

--no-force-cross-resource-refs

Don’t force cross-resource reference mode on (default). The mode will be enabled if applica-
ble (see section 1.5). If used in \BibG1lsOptions, this option should be specified as

\BibGlsOptions{force-cross-resource-refs=false}

--provide-glossaries

This setting will make bib2gls add the line
\provideignoredglossary*{({type)}

to the .glstex file before an entry is defined where that entry has the type field set to an
unknown glossary type (bib2gls can detect from the .aux file all glossaries that have been
defined with \newglossary but not those defined with \newignoredglossary).

This ensures that the glossary exists, but the use of \provideignoredglossary (rather
than \newignoredglossary) will prevent an error if the glossary has already been defined.

--no-provide-glossaries

This setting prevents bib2gls from providing unknown glossaries, except in a few doc-
umented situations (the master, trigger-type, ignored-type and secondary options).
This is the default since it’s a useful way of detecting misspelt glossary labels. It’s harder to
detect the problem if a misspelt label has caused an entry to be added to a hidden glossary.
If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{provide-glossaries=false}

--replace—-quotes

Single and double-quote characters (' and ") will be written as \bibglsaposchar and \bib-
glsdoublequotechar in field values and group information written to the .glstex file.

--no-replace-quotes

Single and double-quote characters (' and ") will be written as those actual characters (de-
fault). If used in \BibG1lsOptions, this option should be specified as

\BibGlsOptions{replace-quotes=false}

58

4 .bib Format

bib2gls recognises certain entry types. Any unrecognised types will be ignored and a warn-
ing will be written to the transcript file. Bib file entry types can be divided into: special entry
types and glossary entry types. The resource options mostly apply only to the glossary entry
types (except where noted).

The glossary entry types correspond to glossary entries that can be referenced in the doc-
ument with commands like \gls. They are defined in the usual .bib format:

@(entry-type){(id) ,
(field-name-1) = {(text)},

Zﬁeld—name—n) = {(text)}
}

where (entry-type) is the entry type (listed below), (field-name-1), ..., (field-name-n) are the
field names and (id) is a unique label. The label can’t contain any spaces or commas, and
most special characters are forbidden. The hyphen character and some other punctuation
characters are allowed by bib2gls, but you need to make sure that your document hasn’t
made them active. In general it’s best to stick with alpha-numeric labels. The field values
may be delimited by braces {(text)} or double-quotes " (text)".

The 1label-prefix option can be used to instruct bib2gls to insert prefixes to the labels
((id)) when the data is read. Remember to use these prefixes when you reference the entries
in the document, but don’t include them when you reference them in the .bib file. There
are some special prefixes that have a particular meaning to bib2gls: “dual.” and “ext(n).”
where (n) is a positive integer. In the first case, dual. references the dual element of a dual
entry (see @dualentry). This prefix will be replaced by the value of the dual-prefix option.
The ext(n). prefix is used to reference an entry from a different set of resources (loaded by
another \GlsXtrLoadResources command). This prefix is replaced by the corresponding
element of the list supplied by ext-prefixes, but this is only supported if the cross-resource
reference mode is enabled (see section 1.5).

In the event that the sort value falls back on the label, the original label supplied in the
.bib file is used, not the prefixed label.

4.1 Encoding

If you are using XgiTEX or LuaBIEX (which are natively UTF-8) or if you are using a modern
TgX distribution pdfEIEX with UTF-8 support, then you can have UTF-8 characters in the

59

4.2 Fields

(id) of your entries. (Avoid TgX special characters, active characters or characters that are
part of the .bib syntax.)
You can set the character encoding in the .bib file using:

% Encoding: (encoding-name)
where (encoding-name) is the name of the character encoding. For example:
% Encoding: UTF-8

You can also set the encoding using the charset option, but it’s simpler to include the above
comment on the first line of the .bib file. (This comment is also searched for by JabRef to
determine the encoding, so it works for both applications.) If you don’t use either method
bib2gls will have to search the entire .bib file, which is inefficient and you may end up
with a mismatched encoding.

The encoding comment line must come before any non-ASCII content otherwise a
malformed input error may occur while parsing the file for the comment line.

If there is no encoding line in the .bib file and the charset option hasn’t been used, then
the default encoding will be assumed (see section 1.1).

4.2 Fields

Each entry type may have required fields, optional fields and ignored fields. These are set
using a key=value list within @(entry-type){(id), (fields)} in the .bib file. Most keys recog-
nised by \newglossaryentry may be used as a field unless bib2gls considers them an
internal field (see below). In general, you shouldn’t need to use the sort field.

If an optional field is missing and bib2gls needs to access it for some reason, bib2gls
will try to fallback on another value. The actual fallback value depends on the entry type.
The most common fallback is that used if the sort field is missing, which is typically the
case. This approach allows different entry types to have different fields used for sorting (see
section 5.8).

Predefined fields for use in .bib files are listed in Tables 4.1, 4.2, 4.3 and 4.4. If you add
any custom keys in your document using \glsaddkey or \glsaddstoragekey, those com-
mands must be placed before the first use of \GlsXtrLoadResources to ensure that bib2gls
recognises them as a valid field name.

If you define your own custom keys, ensure that they don’t contain spaces, commas
(,), equal signs (=) or any other character that isn’t supported by the .bib format.
Additionally, if you want to use assign-fields, ensure that you don’t use any of the
assignment special characters, such as plus (+), within any field names.

Internal fields that may be assigned within the document (the BIEX assignment code hav-
ing been written by bib2gls in the .glstex file) are listed in Table 4.5. These typically

60

4.2 Fields

shouldn’t be used in the .bib file. Some of these fields can be set for a particular docu-
ment using a resource option, such as type or group. With --warn-non-bib-fields set,
bib2gls will check for internal fields that can cause interference with its normal operations
and will warn if any are found in the .bib file.

There are also some fields that are set and used by glossaries or glossaries-extra listed in Ta-
ble 4.6 that aren’t recognised by bib2gls. In most cases these fields don’t have a designated
key and are only intended for internal use by bib2gls or by the glossaries or glossaries-extra
package. Note that the value of the sort field written to the .bib file doesn’t always exactly
match the sort value used by bib2gls (which is stored in bib2gls@sort). Any special char-
acters found in the sort value are always substituted before writing the .bib file to avoid
syntax errors.

Any unrecognised fields will be ignored by bib2gls. This is more convenient than using
\input or \loadglsentries, which requires all the keys used in the file to be defined,
regardless of whether or not you actually need them in the document.

Other entries can be cross-referenced using the see, seealso or alias fields or by using
commands like \gls or \glsxtrp in any of the recognised fields. These will automatically
be selected if the selection setting includes dependencies, but you may need to rebuild the
document to ensure the location lists are correct. Use of the \glssee command will create
an ignored record and the see field will be set to the relevant information. If an entry has
the see field already set, any instance of \glssee in the document for that entry will be
appended to the see field (provided you have at least v1.14 of glossaries-extra). In general,
it’s best just to use the see field and not use \glssee.

The seealso key was only added to glossaries-extra v1.16, but this field may be used with
bib2gls even if you only have version 1.14 or 1.15. If the key isn’t available, seealso={(xr-
list)} will be treated as see={ [\seealsoname] (xr-list) } (the resource option seealso won’t
have an effect). You can’t use both see and seealso for the same entry with bib2gls. Note
that the seealso field doesn’t allow for the optional [(tag)] part. If you need a different tag,
either use see or change the definition of \seealsoname or \glsxtruseseealsoformat.
Note that, unless you are using xindy, \glsxtrindexseealso just does \glssee[\see-
alsoname], and so will be treated as see rather than seealso by bib2gls. Again, it’s better
to just use the seealso field directly.

You can identify an arbitrary field as containing a list of dependent entry labels with
dependency-fields. This instructs bib2gls to parse the listed fields for dependencies in a
similar manner to the see field, but it doesn’t add any information to the cross-referencing
part of the location list. The option may be used in combination with the see or seealso

fields.

61

Field
alias

category
description

descriptionplural

first
firstplural
long

longplural
name
nonumberlist

parent
plural
see

seealso
short

shortplural
symbol
symbolplural
text

userl

user?

user3

user4

userb

user6

4.2 Fields

Table 4.1: Fields Provided by glossaries-extra

Description

The entry with this field set is a synonym of the entry whose
label is given by this field.

The entry’s category label.

The description displayed in the glossary.

The plural form of the description.

The text to display on first use with \gls{(label)}.

The text to display on first use with \glspl{(label)}.

The long form of an abbreviation. (Set internally by commands
like \newabbreviation.)

The plural long form of an abbreviation.

The name displayed in the glossary.

Used to suppress the location list for a specific entry. Its value
may only be true or false. Technically this isn’t actually a field
as its value isn’t saved so it can’t be referenced or modified after
the entry has been defined.

The parent entry’s label. See section 1.3.

The text to display on subsequent use of \glspl{(label)}.
General purpose cross-reference (syntax:

see={ [(tag)] (xr-list)}).

Cross-reference related entries (syntax: seealso={(xr-list)}).
The short form of an abbreviation. (Set internally by commands
like \newabbreviation.)

The plural short form of an abbreviation.

The associated symbol.

The plural form of the associated symbol.

The text to display on subsequent use of \gls{(label)}.

A general purpose user field.

A general purpose user field.

A general purpose user field.

A general purpose user field.

A general purpose user field.

A general purpose user field.

62

4.2 Fields

Table 4.2: Fields Provided by bib2gls

Field
adoptparents

dualdescription
duallong
duallongplural

dualprefix

dualprefixfirst

dualprefixfirstplural

dualprefixplural

dualshort

dualshortplural

Description

The list of adopted parents for entries spawned by
Oprogenitor. (Field only available for use in .bib file
within @progenitor-like entries.)

May be used to identify a dual description

The long form of a dual abbreviation mapped by
Q@dualabbreviation.

The plural long form of a dual abbreviation mapped by
O@dualabbreviation.

The dual of the prefix field. This field isn’t provided with a
key or associated command, but can be accessed as an
internal field

The dual of the prefixfirst field. This field isn’t provided
with a key or associated command, but can be accessed as
an internal field

The dual of the prefixfirstplural field. This field isn’t
provided with a key or associated command, but can be
accessed as an internal field

The dual of the prefixplural field. This field isn’t
provided with a key or associated command, but can be
accessed as an internal field

The short form of a dual abbreviation mapped by
Odualabbreviation.

The plural short form of a dual abbreviation mapped by
O@dualabbreviation.

Table 4.3: Fields Provided by glossaries—prefix

Field

prefix
prefixfirst
prefixfirstplural
prefixplural

Description

The prefix associated with the text field.

The prefix associated with the first field.

The prefix associated with the firstplural field.
The prefix associated with the plural field.

Table 4.4: Fields Provided by glossaries-accsupp

Don’t load glossaries—accsupp directly (with \usepackage) when using glossaries-extra. Load
using the accsupp package option instead.

Field
access

Description
The replacement text for the name field.

63

4.2 Fields

Fields Provided by glossaries—accsupp (Continued)

Field
descriptionaccess
descriptionpluralaccess
firstaccess
firstpluralaccess
longaccess
longpluralaccess
pluralaccess
shortaccess
shortpluralaccess
symbolaccess
symbolpluralaccess
textaccess

Description

The replacement text for the description field.
The replacement text for the descriptionplural field.
The replacement text for the first field.

The replacement text for the firstplural field.
The replacement text for the long field.

The replacement text for the longplural field.
The replacement text for the plural field.

The replacement text for the short field.

The replacement text for the shortplural field.
The replacement text for the symbol field.

The replacement text for the symbolplural field.
The replacement text for the text field.

Table 4.5: Fields Sometimes Set by bib2gls in the .glstex File

You may define and assign bibtextype as a key (although it’s more likely to be aliased).
Don’t define any of the others listed in this table, and don’t use any of them in the .bib file.
A possible exception is the type field, but it’s more flexible to set that through a resource
option. The explicit use of group within a .bib file can cause unpredictable results and is
best set through a resource option or by bib2gls. In general, you shouldn’t need to set the
sort field as appropriate fallbacks should produce useful sort values (see section 5.8).

Field
bibtexcontributor

bibtexentry
bibtexentryQ(entry-type)
bibtextype

childcount
childlist
counter

definitionindex
dual

Description

An internal list field provided when a
@contributor entry is automatically created by
Obibtexentry.

An internal list field created by @bibtexentry.
An internal list field created by @bibtexentry.
Used by bib2gls as a substitution for BETEX's
type field when parsing @bibtexentry. Needs to
be defined or aliased to make it available in the
document.

Stores the number of children this entry has had
selected.

A list of labels (in etoolbox’s internal list format) of
the children this entry has had selected.

The default counter used for indexing (assigned by
the counter option).

Stores the definition index.

Created by dual-field if set with no value, this
field is used to store the dual label.

64

4.2 Fields

Fields Sometimes Set by bib2gls in the . glstex File (Continued)

Field
(field)endpunc

group
indexcounter
location
loclist

originalentrytype

originalid
primarylocations

progenitor
progeny
recordcount

recordcount . (counter)

recordcount . (counter) . (location)

rootancestor
secondarygroup

secondarysort
siblingcount
siblinglist

sort
type

useindex

Description

Used with the check-end-punctuation option.
The letter group determined by the comparator (or
assigned by the group option). See section 1.3.
Stores the location corresponding to the matching
wrglossary reference.

The typeset location list.

The internal list of locations.

The original entry type before any aliasing was
applied or the actual entry type if no aliasing.

The original label as given in the .bib file.

Stores the locations that use one of the designated
primary formats, if enabled.

The label identifying the @progenitor that
spawned this entry.

A comma-separated list of labels identifying the
entries spawned by @progenitor.

Used with record counting to store the total record
count.

Used with record counting to store the total
number of records for a given counter.

Used with record counting to store the total
number of records for a given location.

Stores the label of this entry’s root ancestor.

The letter group determined by the comparator
used with the secondary sort.

The sort value determined by the comparator used
with the secondary sort.

Stores the number of siblings this entry has had
selected.

A list of labels (in etoolbox’s internal list format) of
the siblings this entry has had selected.

The sort value obtained by the comparator.

The glossary this entry belongs to (assigned by the
type option). See section 1.3.

Stores the order of use index

65

4.2 Fields

Table 4.6: Internal Fields Set by glossaries or glossaries-extra or bib2gls

Don’t define any of these as keys and don’t use any of them in the .bib file.

Field
bib2gls@sort

bib2gls@sortfallback

currcount
currcount@(value)
desc
descplural
firstpl

flag

index

indexed

level

longpl
prenumberlist

prevcount

prevcount@({value)
prevunitmax
prevunittotal
shortpl
sortvalue

unitlist
useri
userii
useriii
useriv
userv
uservi

Description

Used by bib2gls to store the actual sort value.

Used by bib2gls to store the sort fallback value.

Used with entry counting to store the current total.

Used with unit entry counting (glossaries-extra).
Corresponds to description key.
Corresponds to descriptionplural key.
Corresponds to firstplural key.

Boolean that determines if an entry has been used.

The main part of the indexing code (makeindex or xindy).
The value is incremented everytime the entry is indexed.
Hierarchical level.

Corresponds to longplural key.

set by the nonumberlist entry key with
\makenoidxglossaries

Used with entry counting to store the total from the previous
run.

Used with unit entry counting (glossaries-extra).

Used with unit entry counting (glossaries-extra).

Used with unit entry counting (glossaries-extra).
Corresponds to shortplural key.

Original sort value (before sanitizing and escaping special
characters).

Used with unit entry counting (glossaries-extra).
Corresponds to user1 key.

Corresponds to user? key.

Corresponds to user3 key.

Corresponds to user4 key.

Corresponds to user5 key.

Corresponds to user6 key.

Table 4.7: Compound Set Fields

Only available for @compoundset. These correspond to the arguments of \multiglossary-

entry.

Field Description

elements Only available for @compoundset this required field should contain a
comma-separated list of labels.

66

4.2 Fields

Compound Set Fields (Continued)

Field Description

main Only available for @compoundset this optional field should contain the main
label. If omitted, the final element from the elements field is assumed.

option Only available for @compoundset this optional field should contain the
default options that govern the set (which override conflicting options set
with \multiglossaryentrysetup and can be overridden by options to
commands like \mgls).

67

4.3 String Concatenation

4.3 String Concatenation

The .bib format allows you to perform string concatenation. That is, join fragments together
to form a single value. The concatenation operator in .bib files is #. For example, if the
following string is defined:

Ostring{markuplang={markup languagel}}
Then values can be obtained by concatenating this string with other strings. For example:

Q@abbreviation{xml,
short={XML},
long={extensible } # markuplang

}
@abbreviation{html,
short={HTML},
long={hypertext } # markuplang
}

This is equivalent to:

@abbreviation{xml,
short={XML},
long={extensible markup language}

}
O@abbreviation{html,

short={HTML},

long={hypertext markup languagel}
}

Note that some resource options allow string concatenation in their syntax. That uses a
different operator. See section 5.1 for further details.

4.4 Special Entry Types

The bib entry types described in this section don’t correspond to any glossary entry type.
They aren’t affected by most of the resource options, including sorting or filtering.

Comments

The original .bib file format as defined by BBIEX doesn’t have a designated comment char-
acter, but instead treats anything outside of @(entry){(data)} as unwanted material that’s
ignored. This can catch out users who try to do something like:

hOmisc{sample, title={Sample} }

638

4.4 Special Entry Types

In this case, the percent character is simply discarded and the line is treated as:
O@misc{sample, title={Sample} }

Some applications that parse .bib files are less tolerant of unwanted material. In the case
of bib2gls, the percent character is treated as a comment character and other unwanted
material should be omitted. Avoid using comments within field values. Comments are best
placed outside of entry definitions.

The most common type of comment is the encoding comment, described above. BETEX’s
@comment is also supported by bib2gls for general comments, but not for the encoding.

Preamble

As with BBIEX, @preamble is also supported by bib2gls. This will be written to the . glstex
file unless prevented with write-preamble={false}. The TgX Parser Library used by bib2gls
will parse the contents of @preamble unless interpret-preamble={false} (or the inter-
preter is switched off with ——no-interpret).

Compound Entry Sets

A compound entry isn’t a normal glossary entry but corresponds to a multi-entry (com-
pound or combined) set provided by glossaries-extra v1.48+, which is defined by the com-
mand \multiglossaryentry (or \providemultiglossaryentry). These are referred to
as multi-entries in glossaries-extra but are referred to as compound entries here to avoid con-
fusion with the multi-entry types. They are referenced with commands like \mgls not with
the \gls set of commands. As such, they don’t belong in any glossary list, although their
component elements do.

Most resource options don’t apply to this entry type. Options specific to compound
entries are listed in section 5.16.

Essentially, a label is defined that refers to a set of labels corresponding to entries that have
already been defined. One element in the set is considered the main label. Entry labels may
appear in multiple sets.

Although the glossaries-extra package allows the same label to be used for a regular
entry and a compound entry, the .bib format doesn’t allow this.

A compound entry provides a convenient way to apply commands like \gls to multiple
entries in one command (such as \mgls). Compound entry labels may only be used in the
\mgls-like commands or in a cross-reference field.

For example, consider the following document:

\documentclass{article}
\usepackage{hyperref}

69

4.4 Special Entry Types

\usepackage [record,style={tree}]{glossaries-extra}
\setabbreviationstyle{long-only-short-only}
\renewcommand*{\glsxtronlyname}{J
\protect\glslongonlyfont{\the\glslongtokl}’
}
\newabbreviation{clostridium}{C.}{Clostridium}
\newglossaryentry{botulinum}{name=botulinum,
description={},parent=clostridium}
\newglossaryentry{perfringens}{name=perfringens,
description={},parent=clostridium}
\begin{document}
\gls{clostridum} \gls{botulinum},
\gls{clostridum} \gls{perfringens},
\gls{clostridum} \gls{botulinum}.
\printunsrtglossary
\end{document}

This produces:
Clostridium botulinum, C. perfringens, C. botulinum.

followed by the glossary. This is very cumbersome. Defining a compound entry label simply
provides a shortcut:

\multiglossaryentry{cbot}{clostridium,botulinum}
\multiglossaryentry{cperf}{clostridium,perfringens}

(This has to be done after the entries have been defined.) Now the entries can be more
compactly referenced:

\mgls{cbot},
\mgls{cperf},
\mgls{cbot}.

Each compound entry set must contain at least two elements. The main label is the label of
the element that is considered the main entry of the set. If the main label isn’t identified in
\multiglossaryentry then it’s assumed to be the last element in the set.

In the above example, botulinum is the main label of the cbot set, and perfringens is
the main label of the cperf set. In both sets, clostridium is the “other label”. If there are
more than two elements in the set then “others” refers to all the elements except for the main
label. An entry can be a main label of one set and an other label of another set.

The options, which can be applied to all sets with \multiglossaryentrysetup or to a
specific set using the first optional argument of \multiglossaryentry, determine if each
element of the list has a separate hyperlink to their own target, or if only the main element
should have a hyperlink, or if the entire content of \mgls should be a single hyperlink to the
main entry’s target.

70

4.4 Special Entry Types

With bib2gls, the component entries that form the set should be in .bib files as usual.
The compound entry set may either be defined in the document .tex file using \multi-
glossaryentry (or \providemultiglossaryentry) or they can be defined in the .bib
file using @compoundset. Remember that the set can only be defined after the entries that
make up the elements of the set have been defined. If any .bib files in a resource set contain
@compoundset, the definitions will be added at the end of the . glstex file (using \bibgls-
defcompoundset).

If you have multiple resource sets that reuse the same . bib file containing @compoundset
then either redefine \bibglsdefcompoundset to use \providemultiglossaryentry or
prevent duplicate definitions with compound-write-def={false}.

The elements of the set will still need to be indexed as usual to ensure that they have
records to enable selection. If any element hasn’t been selected, the compound entry define
won’t be written to the . glstex file, regardless of the compound-write-def setting.

The above example can be converted to bib2gls as follows (compound entries defined in
the document . tex file):

\documentclass{article}

\usepackage{hyperref}

\usepackage [record,style={tree}]{glossaries-extra}

\setabbreviationstyle{long-only-short-only}

\renewcommand*{\glsxtronlyname}{’%
\protect\glslongonlyfont{\the\glslongtokl}

}

\GlsXtrLoadResources[src={bacterial]

\multiglossaryentry{cbot}{clostridium,botulinum}

\multiglossaryentry{cperf}{clostridium,perfringens}

\begin{document}

\mgls{cbot}, \mgls{cperf}, \mgls{cbot}.

\printunsrtglossary

\end{document?}

Note that \multiglossaryentry must come after \GlsXtrLoadResources.
The bacteria.bib contains the definitions in the usual way:

@abbreviation{clostridium,
short={C.%},
long={Clostridium}

}

Oindex{botulinum,
parent={clostridium}

}

@index{perfringens,
parent={clostridium}

¥

Alternatively, the compound entries can be defined in the .bib file instead:

71

4.4 Special Entry Types

Q@compoundset{cbot,
elements={clostridium,botulinum}

}

Q@compoundset{cperf,
elements={clostridium,perfringens}

3

The \multiglossaryentry commands should now be removed from the .tex file.

There’s a difference between these two methods on the first KIgX build. In the first exam-
ple, cbot is known, so \mgls{cbot} can perform \gls{clostridum} \gls{botulinum}.
These commands aren’t yet defined so they are both replaced by “??” (resulting in “?? ??”).
As usual, the location list is unreliable until entries are defined and the unknown markers
“??” can be replaced with the correct content. If the document is in a file called myDoc . tex
then the document build:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

will have locations in the resulting PDF file, but they may be incorrect if the associated
temporary files were initially missing.

In the second example, cbot is unknown, so \mgls{cbot} is simply displayed as “??”. In
this case, the .aux file contains information that cbot has been referenced, but there are
no associated records. The entries that belong to the cbot set will be selected as they are
considered dependent on the compound entry. In this case, if you are starting from scratch
(no associated temporary files), you will need:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

At this point, the location lists will appear. After that, you can reduce the document build to:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

(Until you later add new entries.)
If you don’t want locations for the other elements then set the ENCAP to glsignore:

\multiglossaryentrysetup{encapothers=glsignore}

72

4.5 Glossary Entry Types

Q@compoundset
The following fields are available:

elements The comma-separated list of element labels. This corresponds to the final argu-
ment of \multiglossaryentry. (Required.)

main The main label. This field is optional. If omitted, the main label is assumed to be the
last element.

option A comma-separated list of options. This corresponds to the first optional argument
of \multiglossaryentry. This field may be omitted.

These fields can only be used in this entry type.

4.5 Glossary Entry Types

Each of the bib entry types listed below corresponds to one or more glossary entries, which
may be referenced in the document with commands such as \gls.

Standard Entry Types

@string

The standard @string is available and can be used to define variables that may be used in
field values. Don’t include braces or double-quote delimiters when referencing a variable.
You can use # to concatenate strings. For example:

Ostring{ssi={server-side includes}}
Ostring{html={hypertext markup languagel}}

O@abbreviation{shtml,
short="shtml",
long=ssi # " enabled " # html,
see={ssi,html}

}

O@abbreviation{html,
short="html",
long=html

}

O@abbreviation{ssi,
short="ssi",
long=ssi

}

73

4.5 Glossary Entry Types

Note the difference between ="ssi" (a field value delimited by double-quotes), the undelim-
ited =ssi (a reference to the variable), the grouped ={ssi,html} (a field value delimited by
braces) and ssi the entry label.

@preamble

The standard O@preamble is available and can be used to provide command definitions used
within field values. For example:

Opreamble{"\providecommand{\mtx} [1]{\boldsymbol{#1}}"}

Q@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \mtx{M}}

}

Alternatively you can use \glsxtrprovidecommand which behaves the same as \provide-
command within the document but behaves like \renewcommand within bib2gls, which al-
lows you to change bib2gls’s internal definition of a command without affecting the defi-
nition within the document (if it’s already been defined before the resource file is input). In
general, it’s best to just use \providecommand.

The TgX Parser Library used by bib2gls will parse the contents of @preamble before
trying to interpret the field value used as a fallback when sort is omitted (unless interpret
-preamble={false} is set in the resource options). For example:

Opreamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card} [1]{|\set{#1}|}"}

Qentry{s,
name={{}\set{S}},
text={\set{S}},
description={a set}
}
@entry{card,
name={{}\card{S}},
text={\card{S}},
description={the cardinality of \gls{S}}
}

Neither entry has the sort field, so bib2gls has to fall back on the name field and, since
this contains the special characters \ (backslash), $ (maths shift), { (begin group) and } (end
group), the TgX Parser Library is used to interpret it. The definitions provided by @preamble
allow bib2gls to deduce that the sort value of the S entry is just S and the sort value of
the card entry is |S| (see chapter 2).

74

4.5 Glossary Entry Types

What happens if you also need to use these commands in the document? The definitions
provided in @preamble won’t be available until the .glstex file has been created, which
means the commands won’t be defined on the first ETgX run.

There are several approaches:

1. Just define the commands in the document. This means the commands are available,
but bib2gls won’t be able to correctly interpret the name fields.

2. Define the commands in both the document and in @preamble. For example:

\newcommand{\set}[1]{\mathcal{#1}}
\newcommand{\card} [1]{|\set{#1}|}
\GlsXtrLoadResources[src={my-data}]

Alternatively:

\GlsXtrLoadResources [src={my-datal}]
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}

If the provided definitions match those given in the .bib file, there’s no difference. If
they don’t match then in the first example the document definitions will take prece-
dence (but the interpreter will use the @preamble definitions) and in the second exam-
ple the @preamble definitions will take precedence. For example, the document may
define \card as:

\newcommand{\card} [1]{\vert\set{#1}\vert}

3. Make use of \glsxtrfmt provided by glossaries-extra which allows you to store the
name of the formatting command in a field. The default is the user1 field, but this can
be changed to another field by redefining \GlsXtrFmtField.

The .bib file can now look like this:

Q@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}"}

@symbol{S,
name={{}\set{S}},
text={\set{S}},
userl={set},
description={a set}

+

O@symbol{cards,
name={{}\card{S}},
text={\card{S}},
userl={card},
description={the cardinality of \gls{S}}

75

4.5 Glossary Entry Types

Within the document, you can format (text) using the formatting command provided
in the user1 field with:

\glsxtrfmt [{options)] {(label) }{(text)}

(which internally uses \glslink) or

\glsxtrentryfmt{(label)}{(text)}

which just applies the appropriate formatting command to (text). Version 1.23+ of
glossaries-extra also provides a starred form of the linking command:

\glsxtrfmt* [(options)]{(label)}{(text)} [(insert)]

which inserts additional material inside the link text but outside the formatting com-
mand.

If the entry given by (label) hasn’t been defined, then \glsxtrfmt just does (text)
(followed by (insert) for the starred version) and a warning is issued. (There’s no
warning if the entry is defined but the field hasn’t been set.) The (options) are as for
\glslink but \glslink will actually be using:

\glslink [(def-options), (options)]{(label)}{\(csname){(text)} (insert)}

where the default options (def-options) are given by \GlsXtrFmtDefaultOptions.
The default definition of this is just noindex which suppresses the automatic indexing
or recording action. (See the glossaries-extra manual [13] for further details.) The
(insert) part is omitted for the unstarred form.

This means that the document doesn’t need to actually provide \set or \card but can
instead use, for example,

\glsxtrfmt{S}{A}
\glsxtrentryfmt{cardS}{B}

instead of:

\set{A}
\card{B}

The first EIgX run will simply ignore the formatting and produce a warning.

Since this is a bit cumbersome to write, you can provide shortcut commands. For
example:

\GlsXtrLoadResources [src={my-data}]
\newcommand{\gset}[2] [J{\glsxtrfmt [#1]{S}{#2}}
\newcommand{\gcard} [2] [1{\glsxtrfmt [#1]{cardS}I{#2}}

76

4.5 Glossary Entry Types

Whilst this doesn’t seem a great deal different from simply providing the definitions of
\set and \card in the document, this means you don’t have to worry about remem-
bering the names of the actual commands provided in the .bib file (just the entry
labels) and the use of \glsxtrfmt will automatically produce a hyperlink to the glos-
sary entry if the hyperref package has been loaded.

Here’s an alternative .bib that defines entries with a term, a description and a symbol:

O@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt} [1]{|\setfmt{#1}|}"}

Oentry{set,
name={set},
symbol={\setfmt{S}},
userl={setfmt},
description={collection of values}

}

@entry{cardinality,
name={cardinality},
symbol={\cardfmt{S}},
userl={cardfmt},
description={the number of elements in the \gls{set} $\glssymbol

{set}$}

}

I've changed the entry labels and the names of the formatting commands. The definitions
in the document need to reflect the change in label but not the change in the formatting
commands:

\newcommand{\gset}[2] [J{\glsxtrfmt [#1]{set}{#2}}
\newcommand{\gcard} [2] []{\glsxtrfmt [#1]{cardinality}{#2}}

Here’s another approach that allows for a more complicated argument for the cardinality.
(For example, if the argument is an expression involving set unions or intersections.) The
.bib file is now:

Opreamble{"\providecommand{\setfmt} [1]{\mathcal{#1}}
\providecommand{\cardfmt} [1]{|#1|}"}

Q@entry{set,
name={set},
symbol={\setfmt{S}},
userl={setfmt},
description={collection of values}

}
@entry{cardinality,

77

4.5 Glossary Entry Types

name={cardinality},

symbol={\cardfmt{\setfmt{S}}},

userl={cardfmt},

description={the number of elements in the \gls{set} $\glssymbol
{set}$}
}

This has removed the \setfmt command from the definition of \cardfmt. Now the defini-
tions in the document are:

\newcommand{\gset}[1]{\glsxtrentryfmt{set{#1}}
\newcommand{\gcard} [2] []{\glsxtrfmt [#1]{cardinality}{#2}}

This allows for code such as:
\[\gcard{\gset{A} \cap \gset{B}} \]

which will link back to the cardinality entry in the glossary and avoids any hyperlinking
with \gset. Alternatively to avoid links with \gcard as well:

\newcommand{\gset}[1]1{\glsxtrentryfmt{set{#1}}
\newcommand{\gcard} [1]{\glsxtrentryfmt{cardinality}{#1}}

Now \gset and \gcard are simply formatting commands, but their actual definitions are
determined in the .bib file.

Single Entry Types

The entry types described in this section create a single glossary definition per entry (from
glossaries-extra’s point of view). For example:

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values}

}
is analogous to:

\newglossaryentry{matrix}’ label

{% fields
name={matrix},
plural={matrices},
description={rectangular array of values}

by

The secondary option allows the creation of a fake glossary with the entry labels in its
internal list in a different order. This means that the same data can be displayed in two
separate lists without duplicating the resources required by each glossary entry.

Section 4.5 describes bib2gls entry types that create two separate (but related) glossaries-
extra definitions per .bib entry.

78

4.5 Glossary Entry Types

Q@entry

Regular terms are defined by the Gentry field. This requires the description field and
either name or parent. For example:

O@preamble{"\providecommand{\mtx}[1]{\boldsymbol{#1}}"}

Q@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \gls{M}},
seealso={vector}

}

Qentry{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

+

@entry{vector,
name = "vector",
description = {column or row of values, denoted \gls{v}},
seealso={matrix}

b

Qentry{v,
name={\ensuremath{\vec{v}}},
description={a \gls{vector}}

}

If the sort field is missing the default is obtained from the name field (unless overridden
by options like entry-sort-fallback). For hierarchical entries, if the name field is omitted
it will be obtained from the parent’s name. See section 5.8.

Terms defined using @entry will be written to the output (. glstex) file using the com-
mand \bibglsnewentry.

@symbol

The @symbol entry type is much like @entry, but it’s designed specifically for symbols, so
in the previous example, the M and v terms would be better defined using the @symbol entry
type instead. For example:

@symbol{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

79

4.5 Glossary Entry Types

The required fields are name or parent. The description field is required if the name
field is missing. If the sort field is omitted, the default fallback is given by the entry label
(unless overridden by options like symbol-sort-fallback). Note that this is different from
@entry where the sort defaults to name if omitted. See section 5.8.

Terms that are defined using @symbol will be written to the output file using the command
\bibglsnewsymbol.

@number

The @number entry type is like @symbol, but it’s for numbers. The numbers don’t have to be
explicit digits and may have a symbolic representation. There’s no real difference between
the behaviour of @number and @symbol except that terms defined using @number will be
written to the output file using the command \bibglsnewnumber.

For example, the file constants.bib might define mathematical constants like this:

Onumber{pi,
name={\ensuremath{\pil}},
description={the ratio of the length of the circumference
of a circle to its diameter},
user1={3.14159}

@numberqe,
name={\ensuremath{e}},
description={base of natural logarithms},
userl1={2.71828}

}

This stores the approximate value in the user1 field. This can be used to sort the entries in
numerical order according to the values rather than the symbols:

\GlsXtrLoadResources[
src={constants},’ constants.bib
category={number},’ set the category for all selected entries
sort={double},’ numerical double-precision sort
sort-field={user1}) sort according to 'userl' field

]

The category={number} option makes it easy to adjust the glossary format to include the
userl field:

\glsdefpostdesc{number}{’
\ifglshasfield{useri}{\glscurrententrylabel},
{ (approximate value: \glscurrentfieldvalue)}’
{3%

}

80

4.5 Glossary Entry Types

Q@index

The @index entry type is designed for entries that don’t have a description. Only the label
is required. If name is omitted, it’s assumed to be the same as the label, even if parent is
present. (Note this is different to the fallback behaviour of @entry, which fetches the name
from the parent entry.) If the name contains any characters that can’t be used in the label,
you must use the name field. If the sort field is missing the default fallback is obtained from
the name. Note that the @index entry type is not governed by entry-sort-fallback (butit
is governed by custom-sort-fallbacks). This allows @index and @entry to have different
fallbacks if the sort field is missing. See section 5.8.
Example:

@index{duck}
@index{goose,plural={geesel}}
O@index{sealion,name={sea lion}}
@index{facade,name={fa\c{c}ade}}

Terms that are defined using @index will be written to the output file using the command
\bibglsnewindex.

Q@indexplural

The @indexplural entry type is similar to the @index entry type except that the name field,
if missing, is obtained from the plural field. If the plural field is missing it’s obtained
from the text field with the plural suffix appended. If the text field is missing, it’s obtained
from the original entry label. If the sort field is missing the default is obtained from the
name field. (As with @index, @indexplural is not governed by entry-sort-fallback,
but it is governed by custom-sort-fallbacks.) See section 5.8. All fields are optional. For
example:

@indexplural{goose,
plural = {geese}
}

@indexplural{duck}

@indexplural{chateau,
text = {ch\ ateau},
plural = {ch\ ateaux}

¥

This is equivalent to:

@indexplural{goose,
name = {geese},
text = {goosel},

81

4.5 Glossary Entry Types

plural = {geese}
b

@indexplural{duck,
name = {ducks},
text = {duck},
plural = {ducks}

}

@indexplural{chateau,
name = {ch\ ateaux},
text = ch\ ateau,
plural = ch\"ateaux

by

Terms that are defined using @indexplural will be written to the output file using the
command \bibglsnewindexplural.

@abbreviation

The Gabbreviation entry type is designed for abbreviations. The required fields are short
and long. If the sort key is missing, bib2gls will use the field given by abbreviation
-sort-fallback, which defaults to the short field. (If you want an equivalent of \new-
dualentry, use @dualabbreviationentry instead.)

If you use sort-field={name} (rather than the default sort-field={sort}), then the
fallback for the name field is always the short field, regardless of the abbreviation-sort
-fallback setting, unless you use abbreviation-name-fallback to change the fallback
for the name field. See section 5.8.

Note that you must set the abbreviation style before loading the resource file to ensure
that the abbreviations are defined correctly, however bib2gls has no knowledge of the ab-
breviation style so it doesn’t know if the description field must be included or if the default
sort value isn’t simply the value of the short field.

You can instruct bib2gls to sort by the long field instead using abbreviation-sort
-fallback={long}. Youcanalso tell bib2gls to ignore certain fields using ignore-fields,
so you can include a description field in the .bib file if you sometimes need it, and then
instruct bib2gls to ignore it when you don’t want it.

For example:

@abbreviation{html,
short = {html},
long = {hypertext markup languagel,
description = {a markup language for creating web pages}

b

If you want the long-noshort-desc style, then you can put the following in your document
(where the .bib file is called entries-abbrv.bib):

82

4.5 Glossary Entry Types

\setabbreviationstyle{long-noshort-desc}
\GlsXtrLoadResources [src={entries-abbrv},
abbreviation-sort-fallback={long}]

Whereas, if you want the long-short-sc style, then you can instead do:

\setabbreviationstyle{long-short-sc}
\GlsXtrLoadResources[src={entries-abbrv},ignore-fields={description}]

or to convert the short value to upper case and use the long-short-sm style instead:

\setabbreviationstyle{long-short-sm}
\GlsXtrLoadResources[src={entries-abbrv},
short-case-change={uc},’% convert short value to upper case
ignore-fields={description}]

Case-changing can be applied with short-case-change to convert the case of the short
field, as illustrated above. If you use a style that obtains the description from the long
form, but you want to apply a case-change to the description field with description
-case-change, then you can copy the long field to the description with replicate
-fields={long=description}.

For example, if entries-abbrv.bib contains:

@abbreviation{html,
short = {html},
long {hypertext markup language}

3

then the document may include:

\setabbreviationstyle{long-short-sc}

\GlsXtrLoadResources [src={entries-abbrv},
description-case-change={firstuc},
replicate-fields={long=description}]

Note that this can cause a problem for styles that set the description field to the long
form encapsulated by a style command (such as with the long-em-short-em style) as this
will override the style setting.

Similarly, if you want to change the case of the name field:

\setabbreviationstyle{long-short-sc}

\GlsXtrLoadResources[src={entries-abbrv},
description-case-change={firstuc},
name-case-change={uc},
replicate-fields={long=description,short=name}]

Again, this will lose any custom formatting command that would usually be applied by the
abbreviation style to the name field (and description, if applicable).

Terms defined using @abbreviation will be written to the output file using the command
\bibglsnewabbreviation.

83

4.5 Glossary Entry Types

Q@acronym

The Gacronym entry type is like @abbreviation except that the term is written to the output
file using the command \bibglsnewacronym.

Qcontributor

The @contributor entry type is primarily provided for use by the @bibtexentry type. You
may use it explicitly if you want, but you need to take care that it doesn’t clash with @bibtex-
entry. It behaves much like @index except that the term is written to the . glstex file using
the command \bibglsnewcontributor. There are no required fields. As with @index, if
the name field is missing, the fallback value is the entry’s label (see section 5.8). When this
entry type is automatically created by @bibtexentry, the name is set to

\bibglscontributor{(forenames)}{(von)}{(surname)}{(suffix)}

If you do explicitly use @contributor you need to make sure it’s defined before the first
instance of @bibtexentry that tries to access it, but within the same resource set. If you
ensure that the label of @contributor matches the contributor label generated by @bibtex-
entry then they can have their dependency lists updated, and the bibtexentry and bib-
texentry@(entry-type) internal fields can be set for the @contributor entry. For example:

Ocontributor{KnuthDonaldE,
name={\bibglscontributor{Donald E.}{}{Knuth}{}},
description={Famous mathematician and computer scientist who
created \TeX}

O@book{texbook,
title = {The \TeX book},
author = {Donald E. Knuth},
publisher = {Addison-Wesley},
year = 1986

}

The resource options then need to include:

entry-type-aliases={\GlsXtrBibTeXEntryAliases},
labelify-replace={

{[\string\-\string\.]1}{}

}

If the @contributor entry is deferred until after the corresponding @bibtexentry then
you will end up with a label clash.

84

4.5 Glossary Entry Types

Dual Entry Types

The entry types described in this section create two separate (but related) glossaries-extra
entry definitions per .bib entry. The first of these entries is considered the primary entry,
and the second is the dual entry. The naming scheme is @dual(entry-type) where both the
primary and dual are considered to have the same type of entry (such as @dualsymbol where
both the primary and dual are functionally like @symbol) or @dual(primary){dual) where
the primary is functionally like @(primary) and the dual is functionally like @(dual).

If you need a field to store the dual description in (and you’re not simply swapping known
fields around), then you can use the special dualdescription field and add it to your map.

If the fields provided by the glossaries—prefix are defined, there will be additional map-
pings for the special internal fields dualprefix, dualprefixfirst, dualprefixplural,
and dualprefixfirstplural.

For example:

@dualabbreviationentry{svm,
short = {SVM},
long = {support vector machine},
description = {statistical pattern recognition technique}

}
is like:

@abbreviation{svm,
short = {SVM},
long = {support vector machine},
}
Oentry{dual.svm,
text = {SVM},
name = {support vector machine},
description = {statistical pattern recognition technique}

b

and is analogous to:

\newabbreviation{svm}{SVM}{support vector machine}
\newglossaryentry{dual.svm}{name={support vector machine}, text={SVM},
description={statistical pattern recognition techniquel}}

but both entries are considered dependent on each other. This means that if you only ref-
erence the primary entry (using \gls etc) then the dual entry will still be selected if the
selection setting includes dependencies.

The creation of the dual entry involves mapping or copying fields from the primary entry.
Each dual entry type has a set of mappings. If a field in the set of mappings is missing,
its fallback value is used (see section 5.8). Any fields that aren’t listed in the mappings are
simply copied, except for the alias field, which will never be copied to the dual entry, nor

85

4.5 Glossary Entry Types

can it be mapped. The alias will only apply to the primary entry. The dual entry is given
the label (prefix) (id) where (prefix) is set by the dual-prefix option and (id) is the label
supplied in the .bib file.

If dual-sort={combine} then the dual entries will be sorted along with the primary
entries, otherwise the dual-sort indicates how to sort the dual entries and the dual entries
will be appended to the end of the .glstex file. The dual-sort-field determines what
field to use for the sort value if the dual entries should be sorted separately.

Take care if you have a mixture of entry types (such as @dualindexentry, @dualindex-
symbol and @index) and you’re not using the default dual-sort={combine}. Remember
that the primary entries are all sorted together along with the single entries types described in
section 4.5 (but they may be assigned to different glossary types), and then the dual entries
are sorted together (but may be assigned to different glossary types). This may result in
an odd ordering if some of the primaries and some of the duals are assigned to the same
glossary. For example, don’t mix @dualindexabbreviation (duals are abbreviations) with
@dualabbreviationentry (primaries are abbreviations) when you aren’t using dual-sort
={combine} (unless you have two different glossaries for the primary vs dual abbreviations).

Remember that bib2gls is designed to take advantage of \printunsrtglossary, which
simply iterates over all defined entries in the order in which they were defined (or, more
precisely, the order of the internal list of entry labels associated with that glossary). The aim
of bib2gls is to write the entry definitions to the .glstex file so that the internal list of
labels is in the appropriate order.

For example, suppose the file entries.bib contains:

@index{aardvark}
@index{mouse}
@index{zebra}
@dualindexabbreviation{xml,
short={XML},
long={extensible markup language}
}
@dualabbreviationentry{ssi,
short={SSI},
long={server-side includes},
description={directives placed in \gls{html} pages
evaluated by the server}
}
Q@dualindexabbreviation{html,
short={HTML},
long={hypertext markup language}
}
@dualabbreviationentry{css,
short={CSS},
long={cascading stylesheets},
description={a language that describes the style of an

86

4.5 Glossary Entry Types

\gls{html} document}
+

This contains a mixture of entry types, including @dualindexabbreviation (where the dual
is the abbreviation) and @dualabbreviationentry (where the primary is the abbreviation).
Now consider the following document:

\documentclass{article}
\usepackage [record,abbreviations]{glossaries-extra}
\GlsXtrLoadResources[selection={all},src={entries}]

\begin{document}
\printunsrtglossaries
\end{document}

This uses the default sort={combine}, so all the entries are sorted together, resulting in the
order: aardvark, dual.css, css, html, dual.html, mouse, dual.ssi, ssi, xml, dual.xml,
zebra.

The ETEX code written to the . glstex file is essentially (but not exactly):

% from @index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% dual of @dualabbreviationentry{css,..}:

\newglossaryentry{dual.css}{name={cascading stylesheetsl},{text}={CSS},

description={a language that describes the style of an
\glsxtrshort{html} document}}

% primary of @dualabbreviationentry{css,..}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,..}:
\newglossaryentry{html}{name={HTML},description={}}

% dual of @dualindexabbreviation{html,..}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

% from Q@index{mousel:
\newglossaryentry{mouse}{{name}={mouse},description={}}

/o dual of @dualabbreviationentry{ssi,..}:

\newglossaryentry{dual.ssi}{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages

87

4.5 Glossary Entry Types

evaluated by the server}}

% primary of @dualabbreviationentry{ssi,..}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xzml,..}:
\newglossaryentry{xml}{name={XML},description={}}

% dual of @dualindexabbreviation{xml,..}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

% from Q@index{zebral}:
\newglossaryentry{zebra}{name={zebra},description={3}}

Since the document uses the abbreviations package option, \newabbreviation automat-
ically assigns the abbreviation to the abbreviations glossary (created through that package
option). This means that the main (default) glossary contains the entries (in order):

« aardvark (name: aardvark),
+ dual.css (name: cascading stylesheets),
« html (name: HTML),
« mouse (name: mouse),
« dual.ssi (name: server-side includes),
« xml (name: XML),
« zebra (name: zebra).
The abbreviations glossary contains:
« css (short: CSS),
o dual.html (short: HTML),
« ssi (short: SSI),
« dual.xml (short: XML).

Since all the entries were combined and sorted together, the resulting glossaries are both
ordered alphabetically (using short for the abbreviations and name for the rest), but note
that you need to take care when referencing the abbreviations if you want to make use of
the abbreviation style. You need \gls{css} and \gls{ssi} for the primary abbreviations
created with @dualabbreviationentry and \gls{dual.html} and \gls{dual.xml} for

88

4.5 Glossary Entry Types

the dual abbreviations created with @dualindexabbreviation. Also the name of the pri-
mary/dual alternative of the abbreviations is also inconsistent (short form for html and xml
and long form for dual.css and dual.ssi), as different field mappings are used.

If the document is changed so that the dual entries are now sorted and written after all the
primary entries have been dealt with:

\GlsXtrLoadResources[
src={entries},
dual-sort={letter-nocase},
selection={all}

]

then bib2gls first orders the primaries:
« aardvark (name: aardvark),
« css (short: CSS),
« html (name: HTML),
« mouse (name: mouse),
« ssi (short: SSI),
« xml (name: XML),
« zebra (name: zebra)
and writes them to the . glstex file (functionally like):

% from Q@index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% primary of @dualabbreviationentry{css,..}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,..}:
\newglossaryentry{html}{name={HTML},description={}}

% from @index{mouse}:
\newglossaryentry{mouse}t{name={mouse},description={3}}

% primary of @dualabbreviationentry{ssi,..}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xzml,..}:
\newglossaryentry{xml}{name={XML},description={}}

89

4.5 Glossary Entry Types

% from Q@index{zebral:
\newglossaryentry{zebra}{name={zebra},description={}}

Then bib2gls orders the duals:
+ dual.css (name: cascading stylesheets),
e dual.html (short: HTML),
« dual.ssi (name: server-side includes),
o dual.xml (short: XML)
and writes them to the . glstex file (functionally like):

J» dual of @dualabbreviationentry{css,..}:

\newglossaryentry{dual.css}{name={cascading stylesheets},text={CSS},
description={a language that describes the style of an
\glsxtrshort{html} document}}

% dual of @dualindexabbreviation{html,..}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

% dual of @dualabbreviationentry{ssi,..}:
\newglossaryentry{dual.ssit{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages
evaluated by the server}}

% dual of @dualindexabbreviation{xml,..}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

When the .glstex file is input (during the next KIgX run) the entries are defined in the
order:

1. aardvark (type: main),

2. css (type: abbreviations),
3. html (type: main),

4. mouse (type: main),

5. ssi (type: abbreviations),
6. xml (type: main),

7. zebra (type: main),

90

4.5 Glossary Entry Types

8. dual.css (type: main),
9. dual.html (type: abbreviations),
10. dual.ssi (type: main),
11. dual.xml (type: abbreviations).
This means that the main glossary’s internal list is in the order:
« aardvark (aardvark),
« html (HTML),
« mouse (mouse),
. xml (XML),
« zebra (zebra),
+ dual.css (cascading stylesheets),
 dual.ssi (server-side includes)

and the abbreviations glossary’s internal list is in the order:

css (CSS),

ssi (SSI),
e dual.html (HTML),
o dual.xml (XML).

The lists are no longer in alphabetical order as they have a mixture of primary and dual
entries that were separated before sorting.

The above is a fairly contrived example as it wouldn’t make sense in a real document to
have glossary terms (that include a description) mixed with index terms (that don’t include
a description). A better solution would be to use @tertiaryindexabbreviationentry in-
stead of @dualabbreviationentry.

@dualentry

The @dualentry entry type is similar to @entry but actually defines two entries. The dual
entry contains the same information as the primary entry but some of the fields are swapped
around. The default mappings are:

» name — description

» plural — descriptionplural

91

4.5 Glossary Entry Types

+ description — name
» descriptionplural +— plural
If the prefix fields are defined, then the default mappings additionally include:

» prefix — dualprefix

prefixplural — dualprefixplural

o prefixfirst — dualprefixfirst

o prefixfirstplural — dualprefixfirstplural
e dualprefix — prefix

e dualprefixplural — prefixplural

o dualprefixfirst — prefixfirst

o dualprefixfirstplural — prefixfirstplural

The required fields are as for @entry.
For example:

@dualentry{child,
name={child},
plural={children},
description={enfant}

}
is like:

@entry{child,
name={child},
plural={children},
description={enfant}
descriptionplural={enfants}

@entry{dual.child,
description={child},
descriptionplural={children},
name={enfant}
plural={enfants}

92

4.5 Glossary Entry Types

where dual. is replaced by the value of the dual-prefix option. However, instead of defin-
ing the entries with \bibglsnewentry both the primary and dual entries are defined using
\bibglsnewdualentry. The category and type fields can be set for the dual entry using
the dual-category and dual-type options.

For example:

\newglossary*{english}{English}
\newglossary*{french}{French}

\GlsXtrLoadResources[

src={entries-dual},% data in entries-dual.bib

type={english},’% put primary entries in glossary 'english'
dual-type={french},’% put dual entries in glossary 'french'
category={dictionary},’% set the primary category to 'dictionary'
dual-category={dictionary},’, set the dual category to 'dictionary'
sort={en},’, sort primary entries according to language 'en'
dual-sort={fr}) sort dual entries according to language 'fr'

If you need to keep the same name but have different descriptions then you can use dual-
description and set up a mapping to use it. For example:

@dualentry{sample,
name={sample},
description={primary sample description},
dualdescription={dual sample description}

}
The mapping can then be:
dual-entry-map={{description},

{dualdescription}}

@dualindexentry

There are no required fields. The primary entry behaves like @index and the dual entry
behaves like @entry. The default field mapping is:

+ name — name

If the prefix fields are defined, then the default mappings additionally include:
o prefix — dualprefix
» prefixplural — dualprefixplural

o prefixfirst — dualprefixfirst

93

4.5 Glossary Entry Types

o prefixfirstplural — dualprefixfirstplural
+ dualprefix — prefix

» dualprefixplural — prefixplural

o dualprefixfirst — prefixfirst

« dualprefixfirstplural — prefixfirstplural

This doesn’t actually perform any swapping of fields, but it provides the field used for back-
links (if dual-indexentry-backlink is set). The reason that the primary (rather than the
dual) is like @index is to allow the primaries to merge with any @index entries found in the
resource set, since glossary entries with descriptions are likely to be a subset of all indexed
entries.

If no name is given, the dual entry is assigned the (unprefixed) entry label. For example:

@dualindexentry{array,
description={ordered list of values}

}
This is effectively like:

@index{array}

@entry{dual.array,
name={array},
description={ordered list of values}

}

The primary entries are defined using \bibglsnewdualindexentry, which by default sets
the category to index (although this may be overridden, for example, by the category
option). The dual entries are defined with \bibglsnewdualindexentrysecondary.

This is the most convenient way of having an entry that’s also automatically indexed. For
example, suppose the file terms.bib contains:

@index{duck}
@index{zebralt
O@index{aardvark}

and suppose the file entries.bib contains:

@dualindexentry{array,
description={ordered list of values}

by

@dualindexentry{vector,
name={vector},

94

4.5 Glossary Entry Types

description={column or row of values}

3

@dualindexentry{set,
description={collection of values}

3

@dualindexentry{matrix,
plural={matrices},
description={rectangular array of values}

3

These entries can be used in an example document that has an index and a glossary:

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [record, index,stylemods={mcols}]{glossaries-extra}

\GlsXtrLoadResources[
src={terms,entries},
type={index},
label-prefix={idx.},
dual-prefix={gls.},
combine-dual-locations={primary},
dual-type={main}

\begin{document}
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\gls{idx.duck}, \gls{idx.aardvark}, \gls{idx.zebra}.

\renewcommand{\glstreenamefmt} [1]{\textsc{#1}}
\printunsrtglossary[type={main},style={index},nogroupskip]

\renewcommand{\glstreenamefmt} [1]{#1}
\renewcommand{\glstreegroupheaderfmt} [1]{\textbf{#1}}
\printunsrtglossary[type={index},style={mcolindexgroup}]
\end{document}

This uses combine-dual-locations to combine the locations for the primary and dual en-
tries so that they only appear in the index.

To avoid the inconvenience of remembering which prefix to use, you can set up the prefixes
with \glsxtraddlabelprefix and reference entries with \dgls, \dGls etc instead of \gls,
\G1s etc.

95

4.5 Glossary Entry Types

@dualindexabbreviation

The @dualindexabbreviation entry type is similar to @dualindexentry and again, by
default, the field mapping is:

+ name — name
If the prefix fields are defined, then the default mappings additionally include:

o prefix — dualprefix

o prefixplural — dualprefixplural

o prefixfirst — dualprefixfirst

o prefixfirstplural — dualprefixfirstplural
e dualprefix — prefix

» dualprefixplural — prefixplural

o dualprefixfirst + prefixfirst

o dualprefixfirstplural — prefixfirstplural

However in this case the required fields are short and long. The name for the primary entry
defaults to short if omitted. (This may be changed with the abbreviation-name-fallback
option.) The fallback for the sort field is given by abbreviation-sort-fallback, which
defaults to the short field (see section 5.8).

For example:

O@dualindexabbreviation{html,
short = {HTML},
long {hypertext markup language}

}

is like:

@index{html,name={HTML}}

@abbreviation{dual .html,
short = {HTML},
long {hypertext markup language}

}

The primary term is defined using \bibglsnewdualindexabbreviation, which encapsu-
lates the name to match the font used by the dual abbreviation. The encapsulation command
depends on the abbreviation-name-fallback value. If it’s the short field then \bibgls-
useabbrvfont is used, otherwise \bibglsuselongfont is used.

The primary definition also by default sets the category to index (although this again
may be overridden). The dual term is defined using \bibglsnewdualindexabbreviation-
secondary.

96

4.5 Glossary Entry Types

@dualindexsymbol

The @dualindexsymbol entry type is similar to @dualindexentry, but by default the field
mappings are:

+ symbol — name
+ name — symbol
» symbolplural ~ plural
e plural — symbolplural
If the prefix fields are defined, then the default mappings additionally include:

o prefix — dualprefix

prefixplural — dualprefixplural

prefixfirst — dualprefixfirst
o prefixfirstplural — dualprefixfirstplural

e dualprefix — prefix

dualprefixplural — prefixplural
e dualprefixfirst + prefixfirst
o dualprefixfirstplural — prefixfirstplural

The required field is: symbol. If the name field is omitted, the dual entry is assigned a sym-
bol from the original (unprefixed) label. The primary entries are defined using \bibglsnew-
dualindexsymbol, which by default sets the category to index, and the dual entries are de-
fined using \bibglsnewdualindexsymbolsecondary, which by default sets the category
to symbol. For example:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

}
is like:

@index{pi, symbol={\ensuremath{\pi}}}

O@symbol{dual.pi,
name={\ensuremath{\pil}},
symbol={pi},
description={ratio of a circle's circumference to its diameter}

}

97

4.5 Glossary Entry Types

For example, suppose I have a file called symbols.bib that contains:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

3

@dualindexsymbol{e,
name={Euler's number},
symbol={\ensuremath{e}},
description={base of the natural logarithm}

3

Then the previous example document can be modified to have an index, a glossary and a list
of symbols:

\documentclass{report}

\usepackage [colorlinks] {hyperref}
\usepackage [record, symbols,index,stylemods={mcols}]{glossaries-extra}

\newcommand{\bibglsnewdualindexsymbolsecondary}[5]{7
\longnewglossaryentry*{#1}{name={#3}, category=symbol,
symbol={#4},#2,type={symbols}}{#5}’

\newcommand{\indexprimary}[1]{\glsadd[format={hyperbf}]{idx.#1}}

\glsdefpostdesc{symbol}{\indexprimary{\glscurrententrylabel}}
\glsdefpostdesc{general}{\indexprimary{\glscurrententrylabel}}

\GlsXtrLoadResources[
src={entries,terms,symbols},
type={index},
set-widest,
label-prefix={idx.},
dual-prefix={},
combine-dual-locations={primary},
dual-sort={letter-case},
dual-type={main}

\glsxtrnewglslike [hyper={false}]{idx.H{\idx}}H{\idxpl}{\Idx}{\Idxpl}

\begin{document}

98

4.5 Glossary Entry Types

\gls{array}, \gls{vector}, \gls{set}, \glspl{matrix}.
\idx{duck}, \idx{aardvark}, \idx{zebral}.
\gls{e} and \gls{pil}.

\newpage
\gls{array}, \idx{vector}, \idx{set}, \gls{matrix}.

\newpage
\gls{array}, \gls{vector}, \gls{setl}, \gls{matrix}.

\renewcommand{\glstreenamefmt}[1]{\textsc{#1}}
\printunsrtglossary[type={main},nogroupskip,style={alttree}]

\renewcommand{\glstreenamefmt} [1]{#1}
\printunsrtglossary[type={symbols},nogroupskip,style={index}]

\renewcommand{\glstreenamefmt} [1]{#1}
\renewcommand{\glstreegroupheaderfmt} [1]{\textbf{#1}}
\printunsrtglossary[type={index},style={mcolindexgroup}]

\end{document}

Here I've provided some convenient commands for referencing the primary (index) terms
(\idx, \idxpl, \Idx and \Idxpl). This means I don’t need to worry about the label prefix
and it also switches off the hyperlinks (with hyper={false}). These custom commands are
defined using:

\glsxtrnewglslike [(options)] {(prefix)}{(gls-like cs)}{ (glspl-like cs)}{(Gls-like
cs) H (Glspl-like cs)}

which, in this case, essentially does:

\newcommand{\idx}[2] [J{\gls [hyper={false},#1]{idx.#2}}
\newcommand{\Idx} [2] [J{\Gls [hyper={false},#1]1{idx.#2}}
\newcommand{\idxpl}[2] []{\glspl [hyper={false},#1]{idx.#2}}
\newcommand{\Idxpl}[2] [J{\Glspl [hyper={false},#1]{idx.#2}}

but the new commands will also recognise the \gls modifiers, so \idx+ will behave like
\gls+ which wouldn’t be possible if \idx was defined using \newcommand in the above
manner. There’s a similar command:

\glsxtrnewgls [(options)] {{prefix)}{(cs)}

if no case-changing versions are required.

I've also redefined \bibglsnewdualindexsymbolsecondary to put the dual entries cre-
ated with @dualindexsymbol into the symbols glossary (which is created with the symbols
package option), so it overrides the dual-type={main} setting.

99

4.5 Glossary Entry Types

This command also sets the category to symbol, so I can redefine the post-description
hook for symbols (\glsxtrpostdescsymbol) to automatically index the symbol definition.
Similarly for the general post-description hook \glsxtrpostdescgeneral.

Since the post-description hook isn’t done until the glossary has been created, this requires
a slightly longer build process. If the document file is called myDoc . tex, then the complete
document build is:

pdflatex myDoc
bib2gls -g myDoc
pdflatex myDoc
bib2gls -g myDoc
pdflatex myDoc

As from glossaries—extra-bib2gls version 1.37, an alternative method is to identify possi-
ble label prefixes with \glsxtraddlabelprefix or \glsxtrprependlabelprefix and use
\dgls, \dglspl, \dGls or \dGlspl. See the glossaries-extra user manual [13] for further
details.

@dualindexnumber

The @dualindexnumber entry type is almost identical to @dualindexsymbol, but the pri-
mary entries are defined using \bibglsnewdualindexnumber, which by default sets the
category to index, and the dual entries are defined using \bibglsnewdualindexnumber-
secondary, which by default sets the category to number.

Q@dualabbreviationentry

The @dualabbreviationentry entry type is similar to @dualentry, but by default the field
mappings are:

+ long — name
+ longplural — plural
« short — text
If the prefix fields are defined, then the default mappings additionally include:
e prefix — dualprefix
« prefixplural — dualprefixplural

o prefixfirst — dualprefixfirst

prefixfirstplural — dualprefixfirstplural

dualprefix — prefix

100

4.5 Glossary Entry Types

e dualprefixplural — prefixplural
o dualprefixfirst — prefixfirst
o dualprefixfirstplural — prefixfirstplural

You may need to add a mapping from shortplural to plural if the default is inappropriate.
(In bib2gls version 1.0 this entry type was originally called @dualentryabbreviation. In
version 1.1, it was renamed @dualabbreviationentry which makes for a more consistent
naming scheme @dual(primary)(dual).)

The required fields are: short, long and description. This entry type is designed to
emulate the example \newdualentry command given in the glossaries user manual [14].
The primary entry is an abbreviation with the given short and long fields (but not the
description) and the secondary entry is a regular entry with the name copied from the
long field. The fallback for the sort is given by abbreviation-sort-fallback, which
defaults to the short field (see section 5.8).

For example:

@dualabbreviationentry{svm,
long = {support vector machine},
short = {SVM},
description = {statistical pattern recognition technique}

}
is rather like doing:

@abbreviation{svm,
long = {support vector machine},
short = {SVM}

@entry{dual.svm,
name = {support vector machine},
description = {statistical pattern recognition technique}

¥

but dual.svm will automatically be selected if svm is indexed in the document. If dual.svm
isn’t explicitly indexed, it won’t have a location list.

If the sort field is missing bib2gls by default falls back on the name field. If this is missing,
this sort value will fallback on the short field. This means that if name isn’t explicitly given
in @dualabbreviationentry, then the primary entry will be sorted according to short but
the dual will be sorted according its name (which has been copied from the primary long).

Entries provided using @dualabbreviationentry will be defined with:

\bibglsnewdualabbreviationentry

(which uses \newabbreviation) for the primary entries and with :

101

4.5 Glossary Entry Types

\bibglsnewdualabbreviationentrysecondary

(which uses \longnewglossaryentry) for the secondary entries. This means that if the
abbreviations package option is used, the primary entry will be put in the abbreviations
glossary and the secondary entry in the main glossaryUse the type and dual-type options
to override this.

Q@dualentryabbreviation

This entry type is deprecated as from bib2gls version 1.1. It’s functionally equivalent to
@dualabbreviationentry but its name doesn’t fit the general dual entry naming scheme.

Q@dualsymbol

This is like @dualentry but the default mappings are:

» name — symbol
» plural — symbolplural
+ symbol — name

+ symbolplural — plural
If the prefix fields are defined, then the default mappings additionally include:

e prefix — dualprefix

« prefixplural — dualprefixplural

prefixfirst — dualprefixfirst

o prefixfirstplural — dualprefixfirstplural

dualprefix — prefix
e dualprefixplural — prefixplural
o dualprefixfirst — prefixfirst

» dualprefixfirstplural — prefixfirstplural
The name and symbol fields are required. For example:

@dualsymbol{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter}

Entries are defined using \bibglsnewdualsymbol, which by default sets the category
to symbol.

102

4.5 Glossary Entry Types

Q@dualnumber

This is almost identical to @dualsymbol but entries are defined using \bibglsnewdual-
number, which by default sets the category to number.
The above example could be defined as a number since 7 is a constant:

@dualnumber{pi,
name={pi},
symbol={\ensuremath{\pil}},
description={the ratio of the length of the circumference
of a circle to its diameter},
user1={3.14159%}

This has stored the approximate value in the user1 field. The post-description hook could
then be adapted to show this.

\glsdefpostdesc{number}{’
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)})
{37

}

This use of the user1 field means that the dual entries could be sorted numerically accord-
ing to the approximate value:

\usepackage [record,postdot,numbers,style={index}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},’ entries.bib
dual-type={numbers},
dual-sort={double},’ decimal sort
dual-sort-field={useri}

@dualabbreviation

The @dualabbreviation entry type is similar to @dualentry, but by default the field map-
pings are:

+ short — dualshort
» shortplural — dualshortplural
« long — duallong

« longplural — duallongplural

103

4.5 Glossary Entry Types

+ dualshort — short
» dualshortplural — shortplural
e duallong — long
+ duallongplural — longplural
If the prefix fields are defined, then the default mappings additionally include:
e prefix — dualprefix
» prefixplural — dualprefixplural
o prefixfirst — dualprefixfirst
» prefixfirstplural — dualprefixfirstplural
o dualprefix — prefix

+ dualprefixplural — prefixplural

dualprefixfirst — prefixfirst
o dualprefixfirstplural — prefixfirstplural

The required fields are: short, long, dualshort and duallong. This includes some new
fields: dualshort, dualshortplural, duallong and duallongplural. If these aren’t al-
ready defined, they will be provided in the .glstex file with

\glsxtrprovidestoragekey{(key)H{}{}

Note that this use with an empty third argument prevents the creation of a field access com-
mand (analogous to \glsentrytext). The value can be accessed with \glsxtrusefield
instead. Remember that the field won’t be available until the . glstex file has been created.

Note that bib2gls doesn’t know what abbreviation styles are in used, so if the sort field
is missing it will fallback on the short field. If the abbreviations need to be sorted according
to the long field instead, use abbreviation-sort-fallback={long} (see section 5.8).

Terms that are defined using @dualabbreviation will be written to the output file using
\bibglsnewdualabbreviation.

If the dual-abbrv-backlink option is on, the default field used for the backlinks is the
dualshort field, so you’ll need to make sure you adapt the glossary style to show that field.
The simplest way to do this is through the category post-description hook.

For example, if the entries all have the category set to abbreviation, then this requires
redefining \glsxtrpostdescabbreviation (either with \renewcommand or via \glsdef-
postdesc).

Here’s an example dual abbreviation for a document where English is the primary lan-
guage and German is the secondary language:

104

4.5 Glossary Entry Types

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleins&dure}

3

If the abbreviation is in the file called entries-dual-abbrv.bib, then here’s an example
document:

\documentclass{article}

\usepackage [T1]{fontenc}
\usepackage [utf8]{inputenc}

\usepackage [ngerman,main=english]{babel}
\usepackage [colorlinks]{hyperref}
\usepackage [record,nomain] {glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short}

\glsdefpostdesc{abbreviation}{’
\ifglshasfield{dualshort}{\glscurrententrylabel}
{7

\space(\glscurrentfieldvalue)
Y
{3

\GlsXtrLoadResources[
src={entries-dual-abbrv},% entries—-dual-abbrv.bib
type={english},’% put primary entries in glossary 'english'
dual-type={german},’% put dual entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},% dual label prefix
sort={en},’, sort primary entries according to language 'en'
dual-sort={de-1996%},% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlinky add links in the glossary to the opposite entry

\begin{document}

105

4.5 Glossary Entry Types

English: \gls{en.rna}; \gls{en.rna}.
German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries
\end{document}

If the 1abel-prefix is omitted, then only the dual entries will have a prefix:

English: \gls{rna}; \gls{rna}.

German: \gls{de.rna}; \gls{de.rna}.

Another variation is to use the long-short-user abbreviation style and modify the associated
\glsxtruserfield so that the duallong field is selected for the parenthetical material:

\renewcommand*{\glsxtruserfield}{duallong}
This means that the first use of the primary entry is displayed as
ribonucleic acid (RNA, Ribonukleinsédure)
and the first use of the dual entry is displayed as:
Ribonukleinsiaure (RNS, ribonucleic acid)
Here’s an example to be used with the long-short-desc style:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsdure}
description={a polymeric molecule},
user1={Ein polymeres Molekiil}

}

This stores the dual description in the user1 field, so this needs a mapping. The new example
document is much the same as the previous one, except that the dual-abbrv-map option is
needed to include the mapping between the description and user1 fields:

\documentclass{article}

\usepackage [T1]{fontenc}
\usepackage [utf8] {inputenc}

\usepackage [ngerman,main=english]{babel}

106

4.5 Glossary Entry Types

\usepackage [colorlinks]{hyperref}
\usepackage [record,nomain] {glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short-desc}

\glsdefpostdesc{abbreviation}{’
\ifglshasfield{dualshort}{\glscurrententrylabel}
{7

\space(\glscurrentfieldvalue)
Y
{3
}

\GlsXtrLoadResources[
src={entries-dual-abbrv-desc},’ entries-dual-abbrv-desc.bib
type={english},’ put primary entries in glossary 'english'
dual-type={german},’% put dual entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},’% dual label prefix
sort={en},’ sort primary entries according to language 'en'
abbreviation-sort-fallback={long},’% fallback on 'long' field
dual-sort={de-1996},% sort dual entries according to 'de-1996'
% (German new orthography)
dual-abbrv-backlink,’ add links in the glossary to the opposite entry
% dual key mappings:
dual-abbrv-map={’
{short,shortplural,long,longplural,dualshort,dualshortplural,
duallong,duallongplural,description,userl},
{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,
long,longplural,userl,description}

\begin{document}
English: \gls{en.rna}; \gls{en.rna}.
German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries
\end{document}

107

4.5 Glossary Entry Types

Note that since this document uses the long-short-desc abbreviation style, the abbreviation
-sort-fallback needs to be changed to long.
If I change the order of the mapping to:

dual-abbrv-map={’
{long,longplural,short,shortplural,dualshort,dualshortplural,
duallong,duallongplural,description,useri},
{duallong,duallongplural,dualshort,dualshortplural,short,shortplural,
long,longplural,userl,description}

}

Then the back-link field will switch to duallong. The post-description hook can be modified
to allow for this:

\glsdefpostdesc{abbreviation}{’
\ifglshasfield{duallong}{\glscurrententrylabel}
{7

\space(\glscurrentfieldvalue)Y
Y
{3%
}

An alternative is to use the long-short-user-desc style without the post-description hook:

\setabbreviationstyle{long-short-user-desc}
\renewcommand*{\glsxtruserfield}{duallong}

However be careful with this approach as it can cause nested hyperlinks. In this case it’s
better to use the long-postshort-user-desc style which defers the parenthetical material until
after the link-text:

\setabbreviationstyle{long-postshort-user-desc}
\renewcommand*{\glsxtruserfield}{duallong}

If the back-link field has been switched to duallong then the post-description hook is no
longer required.

Q@dualacronym

As @dualabbreviation but defines the entries with \bibglsnewdualacronym.

Tertiary Entry Types

A tertiary entry type is essentially a dual entry that creates three separate (but related)
glossaries-extra entry definitions per .bib entry. As with dual entries, the first of these is
the primary entry. The second and third are referred to as the secondary entry and tertiary
entry.

108

4.5 Glossary Entry Types

The tertiary entry is effectively an appendage of the secondary entrysecondary, and is de-
fined by the same associated \bibglsnew..secondary command that defines the secondary
entry. Therefore the secondary and tertiary are both considered the dual and are treated as
a single entry for the purposes of sorting and collating.

The tertiary entry will never have any locations. Any records found will be assigned to
the secondary (and may then be moved to the primary with combine-dual-locations=
{primary}). The tertiary will always have the same order as the secondary and will have
the same group value. You can set the type for the tertiary with tertiary-type and the
category with tertiary-category. The label prefix defaults to tertiary. and can be
changed with tertiary-prefix.

Q@tertiaryindexabbreviationentry

This entry type is very similar to @dualindexabbreviation but creates a tertiary entry as
well. The required fields are: short and long (as for @dualindexabbreviation) and also
description. The mappings are shared by both entry types. For example:

Qtertiaryindexabbreviationentry{html,
short = {HTML},
long = {hypertext markup language},
description = {a markup language for creating web pages}

}
is analogous to:

\newglossaryentry{html,name={HTML},description={3}}
\newabbreviation{dual.html}{HTML}{hypertext markup language}

\newglossaryentry{tertiary.html,
name={hypertext markup language},
description={a markup language for creating web pages}

}
The last two are actually defined using one command:

\bibglsnewtertiaryindexabbreviationentrysecondary
{dual.html}) secondary label
{tertiary.html}), tertiary label
{..}), secondary fields
{..}), tertiary fields
{HTML}’, primary name
{HTML}’, short
{hypertext markup languagel}’, long
{a markup language for creating web pagesl}) description

109

4.5 Glossary Entry Types

The \bibglsnewtertiaryindexabbreviationentrysecondary command is provided in
the . glstex file as:

\providecommand{\bibglsnewtertiaryindexabbreviationentrysecondary} [8]{%
\newabbreviation [#3]{#1}{#6}{#7}’
\longnewglossaryentry*{#2}J
{name={\protect\bibglsuselongfont{#7}{\glscategory{#1}}},#4})
{#8},

}

which defines the secondary as an abbreviation using \newabbreviation and the tertiary
as a regular entry using \longnewglossaryentry. This means that the tertiary entry is
always defined immediately after the corresponding secondary entry. The primary may be
defined earlier or later in the file depending on the way the entries are sorted and on the
dual-sort setting.

Multi-Entry Types

A multi-entry type is an entry that may spawn multiple primary entries. This means that
both the main entry and the spawned entries are sorted together along with all the other
primary entries. In the case of @spawndualindexentry, the main and spawned entries are
primary. The main entry’s dual is created as per @dualindexentry.

@bibtexentry

The @bibtexentry type will typically need to be aliased as it’s designed for converting BiETEX
entries into bib2gls entries. For example, to make bib2gls treat @article and @book as
though they were both @bibtexentry:

entry-type-aliases={
article=bibtexentry,
book=bibtexentry

}

For convenience, glossaries—extra-bib2gls v1.29+ provides \GlsXtrBibTeXEntryAliases
which covers all the standard BBTEX entry types. Alternatively, you can use unknown-entry
—alias={bibtexentry} to alias all entries that aren’t recognised by bib2gls. If you use
category={same as original entry}, the category field will be set to the original en-
try type (for example, article or book). Similarly you can use type={same as original
entry} to set the type field (but remember that the glossary types will need to be defined
in the document).

There are no required fields. The fallback for the sort field is given by bibtexentry-sort
-fallback (see section 5.8). If you want to access any of the BBIEX fields, you will need to
alias or define them. For example:

110

4.5 Glossary Entry Types

field-aliases={
title=name

}

Since BBIEX's type field conflicts with bib2gls’s type field, when bib2gls parses @bib-
texentry if will convert type to bibtextype, so you must use bibtextype as the identifier
when aliasing.

Alternatively, you can use \GlsXtrProvideBibTeXFields which uses \glsaddstorage-
key to provide all the standard B®IEX fields. (Remember that new fields must be defined
before the first resource set.)

The @bibtexentry essentially creates an @index form of entry, but it additionally defines
a@Qcontributor entry for each listed author or editor and updates the dependency lists: each
Q@contributor is added to the main @bibtexentry’s list of dependencies (so if the @bib-
texentry has a record then all its satellite @contributors are selected with the default
selection={recorded and deps}), and each @contributor is treated as having a cross-
reference to the main @bibtexentry (so if a @contributor has a record then all the linked
@bibtexentry terms will be selected if selection={recorded and deps and see}). You
can instruct bib2gls to treat \citation as an ignored record using --cite-as-record.

Each contributor is effectively defined as:

@contributor{(label),
name={\bibglscontributor{(forenames)}{(von)}{(surname)}{(suffix)}}
}

The label is obtained by converting the name to a label, using the same function as labelify
(which means it’s governed by labelify-replace).

The author and editor fields are always checked, even if those fields aren’t recognised
by bib2gls, (which they aren’t by default). These checks are performed before field aliases
are applied. If neither field is present, no additional entries are spawned. If the dependent
@contributor entry has already been defined, it won’t be redefined, but will have the new
@bibtexentry added to its internal bibtexentry field.

The main @bibtexentry is defined using \bibglsnewbibtexentry and is followed by:

\glsxtrfieldlistadd{(id)}{bibtexcontributor}{(contributor-id)}

where (id) is the label identifying the main @bibtexentry and (contributor-id) is the label
identifying the contributor, for each contributor that has been selected.
Each contributor is defined using \bibglsnewcontributor. The definition is followed

by:
\glsxtrfieldlistadd{(contributor-id)}{bibtexentry}{(id)}
\glsxtrfieldlistadd{(contributor-id)}{bibtexentry@(entry-type)}{(id)}

for each selected @bibtexentry associated with that contributor. The second line provides
the internal list field bibtexentry@(entry-type), where (entry-type) is the original entry
type (before it was aliased to @bibtexentry and converted to lower case). For example
article or book.

111

4.5 Glossary Entry Types

You can iterate over these internal list fields using \glsxtrfielddolistloop or \gls-
xtrfieldforlistloop. For example:

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1}}
\newcommand{\glsxtrpostdesccontributor}{’
\glsxtrifhasfield{bibtexentry}{\glscurrententrylabell},
%
\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentryl}/
{\contributorhandler},
Y
{\par No titles.})
}

(where the resource option field-aliases={title=name} has been used).
Here’s an example that uses the test xampl.bib file that’s provided with TgX distributions:

\documentclass{article}
\usepackage [record,nomain] {glossaries-extra}

\newglossary*{contributors}{Authors/Editors}
\newglossary*{titles}{Titles}

\newcommand{\bibglsnewbibtexentry} [4]{%
\longnewglossaryentry*{#1}{name=#3,#2, type={titles}{#4}/
}

\GlsXtrLoadResources|[
src={xampl},
write-preamble={false},
entry-type-aliases={

\GlsXtrBibTeXEntryAliases
1,
field-aliases={
title=name
1},
replicate-fields={
note=name
1,
labelify-replace={
{[\string\-\string\.]}{}
1,
type={contributors},
category={same as original entry},

112

4.5 Glossary Entry Types

sort-field={category},
sort-suffix={name}

\glsxtrsetgrouptitle{article}{Articles}
\glsxtrsetgrouptitle{booklet}{Booklets}
\glsxtrsetgrouptitle{book}{Books}
\glsxtrsetgrouptitle{inbook}{Book Chapters}
\glsxtrsetgrouptitle{misc}{Miscellaneous}

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1} (#1)}

\newcommand{\glsxtrpostdesccontributorl}y
\glextrifhasfield{bibtexentry}{\glscurrententrylabell},
{7
\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}/
{\contributorhandlerl}y,

Y

{\par No titles.})

\begin{document}
Sample~\cite{book-minimal,article-full,inbook-full,misc-minimal}.
Another sample~\cite{booklet-minimal,misc-full,article-minimal}.

\bibliographystyle{plain}
\bibliography{xampl}

\printunsrtglossary[type={contributors},style={altlist}]
\printunsrtglossary*[type={titles},style={indexgroup}]
{
\renewcommand{\glsxtrgroupfield}{category}’
\renewcommand{\glstreenamefmt} [1]{\emph{#1}}%
\renewcommand{\glstreegroupheaderfmt} [1]{\textbf{#1}}/,
}

\end{document}

If the file is called myDoc . tex then the document build is:

pdflatex myDoc

bib2gls --cite—as-record myDoc
bibtex myDoc

pdflatex myDoc

pdflatex myDoc

113

4.5 Glossary Entry Types

@progenitor

The @progenitor type of entries are the only place where the adoptparents field is per-
mitted. The value should be a comma-separated list of labels. The adoptparents field must
be set and must contain a least one label. If the value contains any of the characters \
(backslash), { (open brace) or } (close brace) then the field will be interpreted (if the default
--interpret settings is on).

Since entries are spawned before fields are processed, the adoptparents field is parsed
before any field aliases (field-aliases) or replication (replicate-fields) takes place.
However, if the adoptparents field isn’t found, bib2gls will check for a simple mapping
in both the field-aliases and replicate-fields settings.

This entry type creates a main progenitor term (with all the given fields except adopt-
parents) and n spawned progeny terms, where n is the number of elements in the adopt-
parents field, that are dependent on the main term.

Each of the spawned progeny entries have the field identified by adopted-parent-field
(parent by default) set to the corresponding element in the adoptparents field.

All fields from the original definition are copied except for the adoptparents, alias and
parent fields. The parent field is never copied, regardless of the value of adopted-parent
—-field. If the adopted parent field is changed to one that’s contained in the original entry,
it’s value will be from adoptparents not the value from the original entry.

The copied fields follow the same conditions as normal entries. (For example, unknown
fields are ignored, case-changes are applied, if appropriate, and the type field must refer-
ence a valid glossary, if set.) If progenitor-type is set, then this assignment is made after
the progeny are created and only applies to the main progenitor entry. The type for the
progeny can be set with progeny-type. For example, progeny-type={same as parent}
will ensure that the progeny are in the same glossary type as their parent entry.

For example, an entry defined as:

@progenitor{(id),
adoptparents = {(parent-1id),..,(parent-Nid)},
(field-name-1) = {(text)},

Zﬁeld—name—n) = {(text)}
}

is essentially like:

@index{(id),
progeny = {(parent-1id).(id),..,(parent-Nid) . (id)},
(field-name-1) = {(text)},

Zﬁeld-name-n) = {(text)}
}

@index{(parent-1id) . (id),

114

4.5 Glossary Entry Types

progenitor = {(id)},
parent = {(parent-1id)},
(field-name-1) = {(text)},

zﬁeld—name-n) = {(text)}

@index{(parent-N id) . (id),
progenitor = {(id)},
parent = {(parent-Nid)},
(field-name-1) = {(text)},

Zﬁeld-name-n) = {(text)}
}

This creates the main (progenitor) (id) entry, which contains all the fields (except for adopt-
parents) that were in the original @progenitor definition and has the new field progeny
set to the comma-separated list of spawned entry labels. The main entries are defined in the
.glstex file with \bibglsnewprogenitor.

In addition to the main (id) entry, the above also creates the spawned progeny entries
(parent-1id) . (id), ..., (parent-N id) . (id) that are dependent on the main (id) entry.

The spawned entries have the parent field set to the corresponding label obtained from
the adoptparents list. This parent entry must also be defined, as usual for the parent
field. (This restriction obviously doesn’t apply if adopted-parent-field is changed from
the default parent.) The spawned entries are defined in the . glstex file with \bibglsnew-
spawnedindex

If the main progenitor entry is referenced in the document then (assuming the default
selection criteria) the spawned entries will also be automatically selected. You can check for
the existence of the progenitor field using \glsxtrifhasfield and fetch the location
field from the main entry, if required.

Although the spawned entries are considered dependents of the main entry, the reverse
doesn’t apply. If a spawned entry is referenced in the document (with (parent-id) . (id)) then
the main entry and its other spawned entries aren’t automatically selected.

For example, suppose the file entries.bib contains:

@indexplural{stylesheet, text={stylesheet language}}
@index{webdesign, name={web design}}
@indexplural{markup, text={markup languagel}}

O@progenitor{xml,
name={XML},

115

4.5 Glossary Entry Types

adoptparents={markup}
+

@progenitor{css,
name={CSS},
adoptparents={stylesheet,webdesign}
}

O@progenitor{html,
name={HTML},
adoptparents={markup,webdesign}
}

@progenitor{xsl,
name={XSL},
adoptparents={stylesheet}

}

and if the document contains:

\documentclass{article}
\usepackage [record,stylemods={tree},style={index}]{glossaries-extra}
\GlsXtrLoadResources [src={entries},selection={alll}]

\newcommand*{\glstreenamefmt} [1]{#1}
\begin{document}
\printunsrtglossaries

\end{document}

Then the resulting list will be:

CSS
HTML
markup language
HTML
XML
stylesheet language
CSS
XSL
web design
CSS
HTML
XML
XSL

116

4.5 Glossary Entry Types

This allows the HTML and CSS entries to be listed under multiple parents.

The following @spawn(single-type) commands are all forms of @progenitor that create
the given O(single-type) of entry. The spawned entries are actually created with the private
entry type @spawned(type). In the case of @progenitor, the spawned entries are defined
as a @spawnedindex entry. These special @spawned(type) entry types aren’t intended for
use in the . bib file, but if you reference the entry type (for example, with category={same
as entry}) you will get @spawned(type) as the entry type. The original entry type for the
spawned entries is the same as the original entry for the main @progenitor entry.

There is currently only one form of dual @progenitor entry and that’s @spawndualindex-
entry. Only the main progenitor entry is a dual entry. The spawned progeny are all @index
primary entries.

@spawnindex

As Oprogenitor, but the main entries are defined in the .glstex file with \bibglsnew-
spawnindex and the spawned entries are defined with \bibglsnewspawnedindex.

@spawnindexplural

As @progenitor, except that it creates @indexplural terms instead of @index. As with
@indexplural, if the name field isn’t set, it’s assigned to the same value as the plural field
(or the fallback for the plural, if not defined).

The main entries are defined in the .glstex file with \bibglsnewspawnindexplural
and the spawned entries are defined with \bibglsnewspawnedindexplural.

@spawnentry

As @progenitor, except that it creates Gentry terms instead of @index. As with @entry,
the description field is required and either name or parent.

The main entries are defined in the .glstex file with \bibglsnewspawnentry and the
spawned entries are defined with \bibglsnewspawnedentry.

@spawnabbreviation

As @progenitor, except that it creates @abbreviation terms instead of @index. As with
@abbreviation, the short and long fields are required.

The main entries are defined in the .glstex file with \bibglsnewspawnabbreviation
and the spawned entries are defined with \bibglsnewspawnedabbreviation.

@spawnacronym

As @progenitor, except that it creates Gacronym terms instead of @index. As with @acronym,
the short and long fields are required.

117

4.5 Glossary Entry Types

The main entries are defined in the . glstex file with \bibglsnewspawnacronym and the
spawned entries are defined with \bibglsnewspawnedacronym.

@spawnsymbol

As @progenitor, except that it creates @symbol terms instead of @index. As with @symbol,
the required fields are name or parent, and the description field is required if the name
field is missing.

The main entries are defined in the .glstex file with \bibglsnewspawnsymbol and the
spawned entries are defined with \bibglsnewspawnedsymbol.

@spawnnumber

As Gprogenitor, except that it creates Onumber terms instead of @index. As with @number,
the required fields are name or parent, and the description field is required if the name
field is missing.

The main entries are defined in the .glstex file with \bibglsnewspawnnumber and the
spawned entries are defined with \bibglsnewspawnednumber.

@spawndualindexentry

As @progenitor, except that the main (progenitor) entry behaves like @dualindexentry.
The spawned progeny behave like @index are so are all considered primary entries. The
adoptparents field should therefore reference primary entries with the default adopted
-parent-field={parent}.

The main primary and secondary (dual) entries are defined in the . glstex file with \bib-
glsnewspawndualindexentry and \bibglsnewspawndualindexentrysecondary. The spawned
progeny are defined with \bibglsnewspawnedindex.

118

5 Resource File Options

Make sure that you use glossaries-extra with the record package option. This ensures that
bib2gls can pick up the required information from the . aux file, and both record={only}
and record={nameref} additionally load the supplementary glossaries—extra-bib2gls pack-
age. These two record option values also switch on the sort={none} package option (if
you have a new enough version of the base glossaries package), which means that there’s no
attempt to assign or process the sort key if it’s omitted from \newglossaryentry (or sim-
ilar commands). The sort key will be provided by bib2gls for informational purposes, but
there’s no need for KIEX to write it to any external files (unless you use record={hybrid},
in which case you need to prevent bib2gls from sorting using the sort={none} resource
option).
The .glstex resource files created by bib2gls are loaded in the document using:

\GlsXtrLoadResources [{options)]

You can have multiple \GlsXtrLoadResources commands within your document. The as-
sociated data for each resource file is called the resource set (see section 1.5).
There’s a shortcut command:

\glsbibdata [{options)] {({bib-list)}

This simply does:
\GlsXtrLoadResources [src={{(bib-list)}}, (options)]

Note that the older command \glsxtrresourcefile[(options)]{(basename)} is depre-
cated as from glossaries-extra v1.55 because it has the potential to cause a filename clash. If
you actually intend to share resource sets — as opposed to sharing .bib files —across multi-
ple documents then you need to use the master resource option (see section 5.6).

The optional argument (options) is a comma-separated key=value list. Allowed options
are listed below. The option list applies only to that specific (filename) . glstex and are not
carried over to the next instance of \GlsXtrLoadResources. Only the definitions provided
in Opreamble (if the interpreter is on and interpret-preamble={true}) are carried over
to the next resource set and, possibly, cross-resource references if permitted (see section 1.5).
The glossaries-extra package doesn’t parse the options, but just writes the information to the
.aux file. This means that any invalid options will be reported by bib2gls not by glossaries-
extra.

As from glossaries-extra v1.40 you can provide a default set of options by redefining:

\GlsXtrDefaultResourceOptions

119

5 Resource File Options

This command will be inserted at the start of the options list for all resource commands (and
will expand as it’s written to the .aux file). For example:

\renewcommand{\GlsXtrDefaultResourceOptions}{%
selection={all},src={entries}}
\GlsXtrLoadResources[
type={symbols},
match={entrytype=symbol}]
\GlsXtrLoadResources[
type={abbreviations},
match={entrytype=abbreviation}]

This acts like:

\GlsXtrLoadResources[
selection={all},src={entries},
type={symbols},
match={entrytype=symbol}]

\GlsXtrLoadResources[
selection={all},src={entries},
type={abbreviations},
match={entrytype=abbreviation}]

If you have multiple .bib files you can either select them all using src={(bib list)} in
a single \GlsXtrLoadResources call, if they all require the same settings, or you can load
them separately with different settings applied.

For example, if the files entries-terms.bib and entries-symbols.bib have the same
settings:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]
Alternatively, if they have different settings:

\GlsXtrLoadResources[src={entries-terms},type={main}]
\GlsXtrLoadResources[src={entries-symbols},sort={use}, type={symbols}]

Note that the sorting is applied to each resource set independently of other resource sets.
This means that if you have multiple instances of \GlsXtrLoadResources but only one
glossary type, the glossary will effectively contain blocks of sorted entries. For example, if
filel.bib contains:

Oindex{duck}
Oindex{zebra}
Oindex{aardvark}

and file2.bib contains:

120

5 Resource File Options

@index{caterpillar}
@index{bee}
O@index{wombat}

then
\GlsXtrLoadResources[src={filel,file2}]

will result in the list: aardvark, bee, caterpillar, duck, wombat, zebra. These six entries are
all defined when \ jobname . glstex is read. Whereas

\GlsXtrLoadResources[src={filel}]
\GlsXtrLoadResources [src={file2}]

will result in the list: aardvark, duck, zebra, bee, caterpillar, wombat. The first three (aard-
vark, duck, zebra) are defined when \ jobname . glstex is read. The second three (bee, cater-
pillar, wombat) are defined when \jobname-1.glstex is read. Since \printunsrtglos-
sary simply iterates over all defined entries, this is the ordering used.

Abbreviation styles must be set (using \setabbreviationstyle) before the resource
command that selects the abbreviations from the appropriate .bib file, since the entries
are defined (through \newabbreviation or \newacronym) when \GlsXtrLoadResources
inputs the . glstex file. (Similarly for any associated abbreviation style commands that must
be set before abbreviations are defined, such as \glsxtrlongshortdescname.)

Note bib2gls allows . bib files that don’t provide any entries. This can be used to provide
commands in @preamble. For example, suppose I have defs.bib that just contains:

Opreamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}
\providecommand{\parenswap} [2]{#2 (#1)}"}

This provides two commands:
\strong{(text)}

(which sets the font weight and colour) and
\parenswap{ (text1)}{(text2)}

(which just displays its second argument followed by the first in parentheses).
Suppose I also have entries.bib that contains:

@index{example,
name={\strong{\parenswap{stuff}{example}}}

}

@index{sample}

@index{test}

@index{foo}

@index{bar}

121

5 Resource File Options

This contains an entry that requires the commands provided in defs.bib, so to ensure those
commands are defined, I can do:

\GlsXtrLoadResources[src={defs,entries}]

Unfortunately this results in the sort value for example being set to redexample (stuff)
because the interpreter has detected the provided commands and expanded:

\strong{\parenswap{stuff}{example}}
to:
\textbf{\color{red}example (stuff)}

It discards font changes, so \textbf is ignored, but it doesn’t recognise \color and so
doesn’t know that the first argument is just the colour specifier and therefore doesn’t dis-
card it. This means that “example (stuff)” is placed between “foo” and “sample” instead of
between “bar” and “foo”.

I can prevent the interpreter from parsing O@preamble:

\GlsXtrLoadResources[src={defs,entries},interpret-preamble={falsel}]
Now when the sort value for example is obtained from:
\strong{\parenswap{stuff}{example}}

no expansion occurs (since \strong and \parenswap are now unrecognised) so the sort
value ends up as: stuffexample which places “example (stuff)” between “sample” and
“test”, which is again incorrect.

The best thing to do in this situation is to split the provided commands into two . bib files:
one that shouldn’t be interpreted and one that should.

For example, defs-nointerpret.bib:

O@preamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}"}

and defs-interpret.bib:

@preamble{"\providecommand{\parenswap} [2]{#2 (#1)}"}

Now the first one can be loaded with interpret-preamble={false}:
\GlsXtrLoadResources[src={defs-nointerpret},interpret-preamble={false}]

This creates a .glstex file that provides \strong but doesn’t define any entries. The other
filedefs-interpret.bib canthen be loaded with the default interpret-preamble={true}:

\GlsXtrLoadResources[src={defs-interpret,entries}]
The provided commands are remembered by the interpreter, so you can also do:

\GlsXtrLoadResources[src={defs-interpret}]
\GlsXtrLoadResources[src={entries}]

The contents of Opreamble are only written to the associated . glstex file, but the definitions
contained within the @preamble are retained by the interpreter for subsequent resource sets.

122

5.1 String Concatenation

5.1 String Concatenation

Some resource options allow string concatenation in their syntax. This is where fragments
or substrings can be joined together to form a value. This is similar to the way concatenation
occurs in . bib files, but a different operator is used. In . bib files, the concatenation operator
is # (hash) but, since this is a problematic character to use in the optional argument of \G1ls-
XtrLoadResources, the operator for string concatenation in resource options is + (plus).

A string concatenation (element-list) in a resource option has the following syntax:

(element-list) ::= (element-value) | (element-value) + (element-list)

(element-value) ::= (string) | (field-ref) | (element-quark){({element-list)} | (match-
ref)

(match-ref) ::= \MGP{(group-ref)}

(group-ref) ::= (index) | (name)

(string) ::= "(tokens)" | {(tokens)}

The (field-ref) syntax is described below in section 5.1, and is used to reference a field value.
The element quarks ({element-quark), described below in section 5.1) take an (element-list)
argument. If the (element-list) argument evaluates to null, they will return null.

Remember that the argument of \GlsXtrLoadResources is expanded as it’s written
to the .aux file. This means that care must be taken to prevent premature expansion
of quarks or any commands that need to be present in a string.

As from glossaries-extra v1.51, the glossaries-extra-bib2gls package (which is automat-
ically loaded with the record option) provides the command \GlsXtrResourceInitEsc-
Sequences which will locally redefine these quark commands to expand to their detokenized
form. So you can do:

\renewcommand*{\glsxtrresourceinit}{J,
\GlsXtrResourceInitEscSequences

}

This means that you can simply write the quark in the resource option without needing to use
\protect or \string. The remainder of this section assumes that \glsxtrresourceinit
has been redefined to use \GlsXtrResourceInitEscSequences, as in the above example.
As with the .bib format, strings ((string)) can be delimited by braces {(text)} or double-
quotes "(text)". If you need a literal double-quote (") then either use brace delimiters or use
\". If you need the actual KIgX accent command \" then use brace delimiters. If you need
braces that start and end in different strings then use double-quote delimiters. For example:

assign-fields={
first = "\cs{emph}{" + name + "}"
}

123

5.1 String Concatenation

The (element-list) may just contain a single element, such as a field reference or a constant
string, but it must still conform to the element syntax. For example, if you want to use copy
-to-glossary to copy all entries to a specific glossary, such as index, then you will need
to markup index as a string. For example:

copy-to-glossary={"index"}
or
copy-to-glossary={{index}}

Note that the outer braces are stripped by the resource option parser before the content is
parsed as an (element-list). If only a single set of braces was used, those braces would be
stripped leaving a bare index, which would be parsed as a field reference.

Element Quarks

The element quarks are uppercase tokens that start with a leading backslash. They have no
meaning to bib2gls’s interpreter nor are they defined in the EIEX document outside of the
scope of the resource command (unless they happen to coincidentally be defined by another
package or are a custom command). Quarks occur outside of strings. Any escape sequences
occurring within a string are considered to be EIEX commands.

\CS{(element-list)}

Returns a control sequence with the control sequence name obtained from concatenating
(element-list). Note that this is different from \cs which expands to the detokenized control
sequence name as the resource options are written to the .aux file.

For example, if the BIgX file has:

\GlsXtrLoadResources[
assign-fields={

name = "\cs{foo}{" + userl + "}"
+
]

then this will expand the options to the .aux file as

assign-fields={
name = "\foo{" + userl + "}"

+

Compare this with:

\GlsXtrLoadResources[
assign-fields={

name = \CS { userl }
+
]

124

5.1 String Concatenation

which will set the name value to \(csname) (no arguments) where (csname) is the value
obtained from the user1 field for that entry. Note that \(csname) will need to be defined in
the document to ensure that the document compiles without error but will also need to be
recognised by bib2gls if the field value needs to be interpreted (such as when obtaining the
sort value).

\MGP{(group-ref)}

The (match-ref) element should only be used with a regular expression from an associ-
ated conditional (see section 5.2). For example, the (condition) part of an assignment rule
in assign-fields.

If a match was found, \MGP can be used to reference a group within the match. The (group-
ref) argument may be either an integer (the group index) or the group name. For example,
suppose a custom field called ordinal may contain content such as 1st or 10th and I want
to encapsulate the suffix part without altering the .bib file. This can be done as follows:

assign-fields={

ordinal =[o] \MGP{1} + " \cs{ord}{" + \MGP{2} + "}"
[ordinal=/(\cs{d}+) (st|nd|rdlth)/]

+

Alternatively, using named groups:

assign-fields={

ordinal =[o] \MGP{num} + " \cs{ord}{" + \MGP{suffix} + "}"
[ordinal=/(?<num>\cs{d}+) (?<suffix>st|nd|rd|th)/]

}

Note that the group name shouldn’t be delimited with double-quotes.

The \MGP quark (which expands to the \MGP identifier for assign-fields) isn’t the
same as \glscapturedgroup (which expands to \string$, allowing a dollar charac-
ter to be written to the .aux file within the replacement part of labelify-replace).

\TRIM{(element-list)}
Returns its argument with any leading and trailing spaces removed.
\INTERPRET{ (element-list)}

Interprets the contents of (element-list) using bib2gls’s interpreter and returns the result,
which may be an empty string if the content only contains unknown commands. Note that
the result is a string with any special characters replaced by detokenized commands, such as
\glsbackslash. This ensures that the value is suitable to be written in the entry definition
in the .glstex file.

It’s important to remember that the result of \INTERPRET is a detokenized string. In gen-
eral, it’s therefore best to have \INTERPRET as the outermost quark.

Suppose [have a .bib file that contains:

125

5.1 String Concatenation

@preamble{"\providecommand{\csfmt}[1]{\glsbackslash #1}"}
@index{relax,name={\csfmt{relax}}}
@index{comment ,name={\Y% comment}}

If the resource options include:

assign-fields={
userl = \INTERPRET { name } ,
+

Then the definitions in the . glstex file will be:

\bibglsnewindex{comment}J
{useri={\glspercentchar \space comment},
name={\’, comment},

sort={comment | }}

\bibglsnewindex{relax}/,
{useri={\glsbackslash relax},
name={\csfmt{relax}},
sort={relax|}}

This ensures that the KIEX syntax in the . glstex definitions is valid and the user1 field can
expand to a literal string. (Remember that the document definition of the custom \csfmt
command may be different from the one provided in the @preamble content.)

The \INTERPRET quark converts \, comment to “% comment ” since the interpreter recog-
nises \%. However, if this value is written to the .glstex file:

user1={% comment},

then this is invalid. When the . glstex file is input by \GlsXtrLoadResources, KIEX will
interpret the percent symbol %, as a comment and the rest of the line, including the closing
brace, will be ignored. This leads to a missing closing brace error.

In the case of the “relax” entry, since a definition of the custom \csfmt is provided in
@preamble, the interpreter will convert \csfmt{relax} to the string “\relax”. If this
value is written to the .glstex file:

useril={\relax},

then this would be parsed as the command \relax when the file is input by \GlsXtrLoad-
Resources.

Therefore, \INTERPRET automatically replaces all the TgX special characters in the result-
ing string to ensure that they expand to their literal meanings in the KTgX document.

Now suppose instead that the resource options include:

assign-fields={
userl = \FIRSTUC { \INTERPRET { name } 1},
+

126

5.1 String Concatenation

This first interprets the value of the name field and substitutes the special characters (so
\relax becomes the string “\glsbackslash relax”). The resulting string is then con-
verted to sentence case, which results in “ \Glsbackslash relax” because the initial back-
slash is now a literal character, and since it’s a non-letter character it’s skipped by the case-

conversion. So now the code written to the . glstex file is:

\bibglsnewindex{comment}/,
{user1={\Glspercentchar \space comment},
name={\Y, comment},

sort={comment | }}

\bibglsnewindex{relax}/
{user1={\Glsbackslash relax},
name={\csfmt{relax}},
sort={relax|}}

This is invalid because \Glspercentchar and \Glsbackslash are not defined.
Suppose the order of the quarks is swapped:

assign-fields={
userl = \INTERPRET { \FIRSTUC { name } },
+

This results in valid ETEX code:

\bibglsnewindex{comment}J
{useri={\glspercentchar \space comment},
name={\’, comment},

sort={comment | }}

\bibglsnewindex{relax}/,
{useri={\glsbackslash Relax},
name={\csfmt{relax}},
sort={relax|}}

If you don’t want the argument of a command to be affected by case-changing commands,
you can use \MFUblocker or \MFUexcl. The glossaries-extra package writes this information
in the . aux file for the benefit of bib2gls. See the mfirstuc manual for further details of those

commands.

\INTERPRETNOREPL{(element-list)}

As \INTERPRET but doesn’t replace special characters. Consider an adjustment to the previ-

ous example:

assign-fields={
userl = \FIRSTUC { \INTERPRETNOREPL { name } 7},
+

127

5.1 String Concatenation

Now \csfmt{relax} isconverted into the literal string “ \relax ” and then the case-conversion
is performed, which results in the literal string “ \Relax ” but this will become an undefined
command in the .glstex file:

userl={\Relax},

In the case of the “comment” entry, \% comment will be converted to the literal string “%
comment ”, which will then have the case-conversion applied, but the .glstex file will be
invalid:

user1={% Comment},

\REPLACESPCHARS{(element-list)}

Detokenises and replaces special characters with commands like \glsbackslash. For ex-
ample:

assign-fields={
userl = \REPLACESPCHARS {

\FIRSTUC { \INTERPRETNOREPL { name } } },
}

This rather long-winded assignment produces the same result as:

assign-fields={
userl = \INTERPRET { \FIRSTUC { name } 7},
}

A difference can be observed if the custom command is made a blocker or exclusion using
\MFUblocker or \MFUexcl.

\LABELIFY{(element-list)}
Converts the contents of (element-list) into a label string, according to the 1abelify criteria.
\LABELIFYLIST{(element-list)}

Converts the contents of (element-list) into a label-list string, according to the labelify
-1list criteria.

\LENA{ (element-list)}

When used within an element list, \LEN returns the length of its (element-list) argument as
a string or null if (element-list) evaluates to null. Note that this is different from using \LEN
in a numerical condition where the result is always an integer (see section 5.2). This means
that \LEN{(list1)} + \LEN{(list2)} performs string concatenation not numerical addition.
Instead, use \LEN{(list1) + (list2)} for the combined length.

The length is the detokenised length, for example, if the name field has the value \emph{x}
then \LEN{name} will evaluate to the string "8". You can use

128

5.1 String Concatenation

\LEN{\INTERPRET{(element-list)}}

to find the length without KIEX commands.

The quarks below identify case-changing functions. The (element-list) argument will be
converted using the appropriate function and the result will be returned. If (element-list)
evaluates to null then null will be returned.

The case-changing functions will use the resource locale, but whether or not bib2gls
recognises the correct rules for the locale depends on whether or not the locale is correctly
supported by the Java locale provider. The language resource file may provide assistance
with case-conversion (see section 1.9). Note that the case-change is performed by bib2gls
not by inserting ETgX case-changing commands into the code.

« \LC{(element-list)} converts (element-list) to lower case;

\UC{(element-list)} converts (element-list) to upper case;

\FIRSTLC{(element-list)} converts the first letter of (element-list) to lower case;

\FIRSTUC{(element-list)} converts the first letter of (element-list) to upper case (sen-
tence case);

\TITLE{(element-list)} converts (element-list) to title case.

There is an additional token \NOCHANGE{(element-list)} which simply evaluates (element-
list) and returns it unchanged.! This isn’t like \NoCaseChange but is more like \@firstof-
one. There is little need for it so it’s not defined by \GlsXtrResourceInitEscSequences.
The only plausible use for it is if you have a class or package that contains something like:

\newcommand{\mycase}{NOCHANGE}
% later as the result of some condition:
\renewcommand{\mycase}{FIRSTUC}
% later on:

\GlsXtrLoadResources[

assign-fields={

name=[o] \cs{\mycase}{name},

% other assignments ..

}

]

In most cases, it should be possible to achieve the same result with a conditional associated
with the resource option or by adjusting the content passed to the resource command. For
example:

The \NOCHANGE support wasn’t intentional, but was simply a by-product of the original implementation of
the case-changing commands.

129

5.1 String Concatenation

\newcommand{\nameassign}{}
% later as the result of some condition:
\renewcommand{\nameassign}{name=[o] \FIRSTUC{name},}
% later on:

\GlsXtrLoadResources[

assign-fields={

\nameassign

% other assignments ..

}
]

Field Reference

The field reference ((field-ref')) syntax is more complicated:

(field-ref) ::= (value-ref) | (entry-ref) -> (field-ref)
(entry-ref) ::= self | parent | root

(value-ref) ::= (field-name) | (label-ref)

(label-ref) ::= (label-type) -> (label-delineator)

(

(

label-type) ::= entrytype | entrylabel | entrybib
label-delineator) ::= original | actual

where (field-name) is the required field name. Note that field names (which need to be used in
a string concatenation) can’t include any of the concatenation or conditional markup special
characters: + [1 =, <>or".

The (entry-ref) part indicates which entry the referenced field belongs to. The keywords
are: self (the entry itself), parent (the entry’s parent), and root (the entry’s hierarchical
root, not including the entry itself). Note that with options such as assign-fields the
entry’s ancestors must be defined before the entry in the .bib file because their fields can
only be referenced after they have been processed. A grandparent entry can be referenced
with parent -> parent ->. Since “parent” is also a field name, if the keyword parent is
followed by —> then the keyword refers to the parent entry otherwise it refers to the parent
field. For example, self -> parent refers to the value of the entry’s parent field, which is
the parent entry’s label, whereas parent -> name refers to the value of the entry’s parent’s
name field.

The special keywords identify values that aren’t normally stored in a field. The keyword
must be followed by the (delineator), which may be original or actual. Available key-
words:

entrytype the entry type, without the leading @, where original refers to the original
entry type used in the . bib file and actual refers to the actual entry type, which may
have changed as aresult of entry-type-aliases (but remember that you can’t match
the special entry types described in section 4.4);

130

5.2 Complex Conditionals

entrylabel the entry label, where original refers to the original label used in the .bib
file and actual refers to the actual label, which may have been altered by options such
as label-prefix;

entrybib the .bib file the entry was defined in, where original refers to the basename
(without the .bib extension, regardless of whether or not it was included in src) and
actual refers to the file name (including the extension and path).

If a syntax error occurs, the error message will show how bib2gls has scanned the in-
formation so far. For example, in the case of assign-fields={parent name} the message
will be:

Error: Invalid syntax for option 'assign-fields': Expected one of
-> + [after ' self -> parent', found 'n'

This indicates that it has read “parent” as meaning the parent field of the current entry since
it isn’t followed by “->”.

5.2 Complex Conditionals

Some options may have a conditional in their value. In certain cases, such as match, the con-
dition is provided as a regular expression, but other conditionals (such asin assign-fields)
are complex. This section describes that complex conditional syntax.

For example, suppose you want to use post-description-dot to automatically append
a dot to descriptions but not to entries that have been defined with @symbol or @number:

post-description-dot={check},
post-description-dot-exclude={
entrytype -> original = "symbol"
| entrytype -> original = "number"

}

The tokens & and | indicate logical “AND” and “OR”, respectively, and ! indicates negation.
Parentheses (and) may be used to control the order of precedence. For example,

(boolean1) | ((boolean2) & ! (boolean3))
Available boolean functions are in the form:
(valuel) (cmp) (value2)

where (valuel) is the left-hand value and (value2) is the right-hand value. The middle (cmp)
operator identifies the comparison function.

The left-hand (valuel) may be a field reference (field-ref) or the integer quark \LEN{(element-
list)} or the concatenate quark \CAT{(element-list)}, where (field-ref) references a field
value and (element-list) is an element list, using the same syntax described in section 5.1.

131

5.2 Complex Conditionals

The right-hand (value2) may be a field reference (field-ref) or \CAT{(element-list)} or
\NULL or a constant string (" (string)" or {(string)}) or a number or a regular expression. You
can’t use \LEN on the right-hand as a numeric value (but it may occur inside the argument
\CAT). You can’t use \NULL or a regular expression on the left-hand side.

Where (valuel) is \LEN{(element-list)}, the length evaluates to an integer and may only
be used in the numerical comparisons. If (element-list) is null, then the length will be 0. The
\LEN quark can’t be used in the right hand (value2) part of a numerical comparison. Note
that if \LEN occurs inside the argument of \CAT then it becomes a string not a number.

\CAT{(element-list)}

Where (valuel) or (value2) is \CAT{(element-list)}, the (element-list) will be evaluated and
treated as a string, which will be null if (element-list) evaluates to null.

\NULL

The null quark may only be used as (value2) for the equality and inequality comparisons. It
can’t be used in any other context. Note that the numeric \LEN doesn’t return null.

Where a field value is referenced ({field-ref)), if the field value is undefined (either the field
isn’t set or the referenced ancestor entry hasn’t been defined) then, if the designated action is
“fallback” (for example, assign-missing-field-action={fallback}), the fallback value
is obtained (see section 5.8). If the value is still undefined it will be considered a null value for
the purposes of the comparison. Note that if the designated action is “empty” (for example,
assign-missing-field-action={empty}) there will be no null values.

(valuel)=\NULL
Evaluates to true if (valuel) is null.
(value1)<>\NULL

Evaluates to true if (valuel) is not null.

For the remaining comparisons, null values will be treated as an empty string. Once the
(field-ref) or \CAT references have been evaluated, their returned value will be turned into
a detokenized string for the purposes of the comparison.

The detokenized values from a field reference may contain any TAB or newline characters
or additional spacing that are present in the . bib file (unless they have already been stripped
by other resource options or field assignments). However, redundant spacing in any literal
strings (" (string)" or {(string)}) are likely to be lost when the resource options are written
to the .aux file.

(valuel)=/(regex)/
(valuel)=/(regex)/i

132

5.2 Complex Conditionals

Evaluates to true if the value matches the given anchored regular expression (regex). If
“1” follows the terminating / then the match is case-insensitive. No other modifiers are
recognised, but you can use embedded flag expressions, such as ?s for “single-line” mode.

In the following string comparisons, the right-hand (string) is a constant string that must
be delimited with double-quotes or braces. The comparisons are according to the Unicode
code points (not locale-sensitive), but if the string is followed by “ i ”, a case-insensitive com-
parison is used.

(valuel)=(string)
(valuel)=(string)i

Evaluates to true if the value is equal to the string. For example:

category="abbreviation"

(valuel)<>(string)
(valuel)<>(string)i

Evaluates to true if the value is not equal to the string.

(valuel)<(string)
(valuel)<(string)i

Evaluates to true if the value is lexicographically less than the string.

(valuel)<=(string)
(valuel)<=(string)i

Evaluates to true if the value is lexicographically less than or equal to the string.

(valuel)>(string)
(valuel)>(string)i

Evaluates to true if the value is lexicographically greater than the string.

(valuel)>=(string)
(valuel)>=(string)i

Evaluates to true if the value is lexicographically greater than or equal to the string.

In the following numerical comparisons, the given (number) should use “ . ” for the deci-
mal point and no number group separators. If the (number) doesn’t contain a decimal point
or if (valuel) is the \LEN{(element-list)} quark then an integer comparison is assumed. If
(valuel) is empty or isn’t numeric it will be treated as 0. The number shouldn’t be delimited
by quotes or braces.

(valuel)=(number)

133

5.2 Complex Conditionals

Evaluates to true if the value is equal to (number). For example:
\LEN{user1}=0.9

This will return true if the user1 field length is 0 and false otherwise. This is because \LEN
enforces an integer comparison which means that 0.9 is converted to 0. Similarly:

\CAT{"0.9"}=0

This will return true because the (number) 0 is an integer which enforces an integer com-
parison so the string "0.9" will be converted to the number 0. Compare this with:

\CAT{"0.9"}=0.0

This will return false because the (number) 0.0 is a decimal, so a decimal comparison will be
used.

(valuel)<>(number)

Evaluates to true if the value is not equal to (number).
(valuel)<(number)

Evaluates to true if the value is less than (number).
(valuel)<=(number)

Evaluates to true if the value is less than or equal to (number).
(valuel)>(number)

Evaluates to true if the value is greater than (number).
(valuel)>=(number)

Evaluates to true if the value is greater than or equal to (number).

Finally, the following are string comparisons made after evaluating and detokenizing both
(valuel) and (value2). The comparisons are case-sensitive and according to the Unicode code
points (not locale-sensitive).

(valuel)=(value2)

Evaluates to true if (valuel) is equal to (value2). For example:

name = parent —-> name
(value1)<>(value2)

Evaluates to true if (valuel) is not equal to (value2).

134

5.2 Complex Conditionals

(valuel)<(value2)

Evaluates to true if (valuel) is lexicographically less than (value2).
(valuel)<=(value2)

Evaluates to true if (valuel) is lexicographically less than or equal to (value2).
(valuel)>(value2)

Evaluates to true if (valuel) is lexicographically greater than (value2).
(valuel)>=(value2)

Evaluates to true if (value) is lexicographically greater than or equal to (value2).
(valuel) \IN (value2)

Evaluates to true if (valuel) is a substring of (value2). If (valuel) is empty or null it’s con-
sidered not a substring regardless of the value of (value2).

(valuel) \NIN (value2)

The negation of the \IN test. Evaluates to true if (valuel) is not a substring of (value2). This
is equivalent to:

! (valuel) \IN (value2)
(valuel) \PREFIXOF (value2)

Evaluates to true if (valuel) is a prefix of (value2) (that is, (value2) starts with (valuel)). If
(valuel) is empty or null it’s considered not a prefix regardless of (valueZ).

(valuel) \NOTPREFIXOF (value2)

Evaluates to true if (valuel) is not a prefix of (value2). This is equivalent to:

! (valuel) \PREFIXOF (value2)
(valuel) \SUFFIXOF (value2)

Evaluates to true if (valuel) is a suffix of (value2) (that is, (value2) ends with (valuel)). If
(valuel) is empty or null it’s considered not a suffix regardless of (value2).

(valuel) \NOTSUFFIXOF (value2)

Evaluates to true if (valuel) is not a suffix of (value2). This is equivalent to:

! (valuel) \SUFFIXOF (value2)

135

5.3 General Options

5.3 General Options

charset=(encoding-name)

If the character encoding hasn’t been supplied in the .bib file with the encoding comment
% Encoding: (encoding-name)

then you can supply the correct encoding using charset={encoding-name}. In general, it’s
better to include the encoding in the .bib file where it can also be read by a . bib managing
systems, such as JabRef.

See -—tex-encoding for the encoding used to write the . glstex file, and see section 1.1
for information about the default encoding.

locale=(lang tag)

Sets the default locale for the current resource set. In general, it’s best to set this at the start
of the resource option list, if required. If not set, the default will be the document locale, if
supplied, otherwise the Java locale will be used.

wordify-math-greek=(boolean)

Instructs the interpreter to replace known math Greek commands with words instead of the
applicable symbol. For example, if an entry has been defined as:

O@index{a-Fe,
name={\ensuremath{\alpha}-iron}

b

Then with wordify-math-greek={true} the interpreter will obtain the sort value “alpha-
iron”. This only works for commands recognised by the TgX Parser Library as Math Greek
commands.

With the default wordify-math-greek={false}, the interpreter will convert \alpha
into the nearest appropriate Unicode character.

The textual replacement depends on whether or not a corresponding entry is available in
the language file bib2gls-extra-(lang).xml for the current resource locale. If no entry is
found, the control sequence name (or substring) will typically be used.

wordify-math-symbol=(boolean)

Similar to wordify-math-greek, this option will apply to other known math symbol com-
mands. Again, this only works for a limited set of commands recognised by the TgX Parser
Library. An alternative is to provide alternative definitions for bib2gls that aren’t picked
up by KIgX, or use \IfNotBibGls, or use a more appropriate field for sorting.

136

5.3 General Options

interpret-preamble=(boolean)

This is a boolean option that determines whether or not the interpreter should parse the
contents of @preamble. The default is true. If false, the preamble contents will still be
written to the . glstex file, but any commands provided in the preamble won’t be recognised
by the interpreter (see chapter 2).

Related options are: set-widest (which uses the interpreter to determine the widest name
for the alttree style or the glossary-longextra styles), interpret-label-fields (which gov-
erns whether or not fields that must only contain a label should be interpreted), 1abelify
(which converts a field into a string suitable for use as a label), and 1abelify-1ist (which
converts a field into a string suitable for use as a comma-separated list of labels).

write-preamble={boolean)

This is a boolean option that determines whether or not the preamble should be written to the

.glstex file. The default is true. Note that the preamble will still be parsed if interpret
—-preamble={true} even if write-preamble={false}. This means it’s possible to provide
bib2gls command definitions in O@preamble that don’t get seen by ETEX.

set-widest=(boolean)

The alttree glossary style needs to know the widest name (for each level, if hierarchical). This
can be set using \glssetwidest provided by the glossary-tree package (or similar commands
like \glsupdatewidest provided by glossaries-extra-stylemods), but this requires knowing
which name is the widest. Alternatively, one of the iterative commands such as \glsFind-
WidestTopLevelName can be used, which slows the document build as it has to iterate over
all defined entries.

The glossary-longextra package, provided with glossaries-extra v1.37+, also needs to know
the widest name, but in this case only the top-level entrytop-level is needed. If this has
already been found through the commands provided with the alttree style then that value
will be used as the default, but you can set another value that’s only used for the glossary
-longextra styles with \glslongextraSetWidest.

The glossaries—extra-bib2gls package provides \glsxtrSetWidest, which sets the widest
name for those styles that need it. As from version 1.8, bib2gls now checks for the existence
of this command and will use it with set-widest to allow for the new styles provided by
the glossary-longextra package.

The boolean option set-widest={true} will try to calculate the widest names for each
hierarchical level to help remove the need to determine the correct value within the docu-
ment. Since bib2gls doesn’t know the fonts that will be used in the document or if there
are any non-standard commands that aren’t provided in the .bib files preamble, this option
may not work. For example, if one entry has the name defined as:

name={some {\Huge huge} text}

and another entry has the name defined as:

137

5.3 General Options

name={some {\small small} text}

then bib2gls will determine that the second name is the widest although the first will ac-
tually be wider when it’s rendered in the document.
When using this option, the transcript file will include the message:

Calculated width of '(text)': (number)

where (text) is bib2gls’s interpretation of the contents of the name field and (number)
is a rough guide to the width of (text) assuming the operating system’s default serif font.
The entry that has the largest (number) is the one that will be selected. This will then be
implemented as follows:

« If the type is unknown then:

— if the interpreter resolves all name fields to the empty string (that is the name
fields all consist of unknown commands) then

« if there are child entries \bibglssetwidestfallback is used,
« otherwise \bibglssetwidesttoplevelfallback is used;

— otherwise \bibglssetwidest is used.

« If the type is known then:

— if the interpreter resolves all name fields for that type to the empty string (that is
the name fields all consist of unknown commands) then

« if there are child entries \bibglssetwidestfortypefallback is used,
« otherwise \bibglssetwidesttoplevelfortypefallback is used;
— otherwise \bibglssetwidestfortype is used.

This leaves TEX to compute the width according to the document fonts. If bib2gls can’t
correctly determine the widest entry then you will need to use one of the commands provided
by glossary-tree, glossary-longextra or glossaries—extra—-stylemods to set it.

In general, if you have more than one glossary it’s best to set the type using options like
type and dual-type if you use set-widest.

entry-type-aliases=(key=value list)

In the .bib file, the data is identified by @(entry-type), such as @abbreviation. It may be
that you want to replace all instances of @(entry-type) with a different type of entry. For
example, suppose my .bib file contains abbreviations defined in the form:

@abbreviation{html,
short = {html},
long {hypertext markup language},
description = {a markup language for creating web pages}

}

138

5.3 General Options

but suppose in one of my documents I actually want all these abbreviations defined with
@dualabbreviationentry instead of @abbreviation. Instead of editing the .bib file I
can just supply a mapping:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
entry-type-aliases={abbreviation=dualabbreviationentry}

]

This makes all instances of @abbreviation behave as @dualabbreviationentry. You can
have more than one mapping. For example:

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
entry-type-aliases={
/» @abbreviation -> @dualabbreviationentry:
abbreviation=dualabbreviationentry,
J» @entry -> @index:
entry=index

]

This option isn’t cumulative. Multiple instances of entry-type-aliases override previous
instances. If (key=value list) is empty there will be no mappings. You can save the original
entry type in the originalentrytype field with save-original-entrytype.

Here’s another example entry in a . bib file:

@foo{html,
name = {HTML},
short = {HTML},
long = {hypertext markup language},
description = {hypertext markup language}

3

Ordinarily this entry would be ignored since @foo isn’t recognised, but it can be mapped like
this:

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
ignore-fields={short,long},
entry-type-aliases={foo=entry}

]

This treats the entry as though it had been defined as:

Qentry{html,
name = {HTML},
description = {hypertext markup language}

139

5.3 General Options

whereas:

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
ignore-fields={name,description},
entry-type-aliases={foo=abbreviation}

]

treats the entry as though it had been defined as:

O@abbreviation{html,
short = {HTML},
long = {hypertext markup language}

unknown-entry-alias=(value)

If this option is set, the (value) is used as the alias for any unknown entry types (after any
aliases provided with entry-type-aliases have been applied). If the value is missing or
empty, unknown entry types will be ignored with a warning.

action=(value)

This governs how the entries are written in the . glstex file. The (value) may be one of:
« define: define the entries;
+ provide: provide the entries;
« copy: copy the entries;
« define or copy: copy existing entries and define non-existing entries.

The default setting is action={define}, which writes the entry definition to the .glstex
file using one of the commands described in section 6.1. Since the record package option au-
tomatically switches on the undefaction={warn} option, any attempt at defining an entry
that’s already been defined will generate a warning rather than an error. The duplicate defi-
nition will be ignored. (The warnings can be found in the .1log file since they are warnings
produce by glossaries-extra not by bib2gls.)

If you have multiple resource sets to help group different types of entry for the same glos-
sary, the action={provide} setting can be used to suppress any warnings if the selection
criteria is too complex to filter out entries that were selected by a previous resource set. If,
however, you want duplicate entries so that you can have the same entry listed in multiple
glossary, you need a different approach.

For example, if you try:

140

5.3 General Options

\newglossary*{copies}{Copies}
\GlsXtrLoadResources [src={entries}]
\GlsXtrLoadResources[sort={use},type={copies},src={entries}]

you’ll find that the copies glossary is empty and there will be warnings in the .1log file
when the second resource file is loaded.

There are various ways of having the same entries in multiple glossaries. The simplest
method is to use secondary, but another method is to use action={copy} which simply
writes

\glsxtrcopytoglossary{(label) }{(type)}

instead of using one of the commands listed in section 6.1. This copies the entries rather

than defining them, which means the entries must already have been defined. You can select

entries that were selected in earlier resource sets with selection={selected before}.
The (type) is determined as follows:

if the entry has the type field set, that’s used;

if the entry is a tertiary and tertiary-type is set, that’s used;

if the entry is a dual and dual-type is set, that’s used;
« otherwise the value of the type option is used.

If you’re not sure whether the entries may already be defined, you can use action={define
or copyt which will use \ifglsentryexists in the resource file to determine whether to
define or copy the entry.

Options that set or modify fields, such as category, group, save-locations, flatten or
name-case-change, will be ignored if entries are copied. However the copy-action-group
-field may be used to copy the group field (which may have been locally set by the sort
method) to another field. This ensures that the original group value from the entry definition
in an earlier resource set won’t be overwritten (unless you set copy-action-group-field
={group}).

Remember that \glsxtrcopytoglossary simply copies the entry’s label to the glossary’s
internal list. The only checks that bib2gls performs if action is not define is to ensure
that the master or secondary options have not been used, since they’re incompatible, and
that the type option is set, since it’s required as a fallback for any entries that don’t have
the type field set. (There are too many options that alter field values to check them all and
some may be used to alter the sorting.) The purpose of the copy action is simply to provide
a duplicate list in a different order.

Remember that if you are using hyperref, you need to use target={false} in the optional
argument of \printunsrtglossary for the glossary containing the copies to prevent du-
plicate hypertargets. Commands like \gls will link to the original entries. For example, in
the preamble:

141

5.3 General Options

\newignoredglossary{copies}
\GlsXtrLoadResources[src={entries}]

\GlsXtrLoadResources[
sort={use},
action={copy},
type={copies},
src={entries}

]
and later in the document:

\printunsrtglossary[title={Glossary (Alphabetical)},style={indexgroup}]
\printunsrtglossary[type={copies},title={Glossary (Order of Use)},
style={index},nogroupskip,’ no grouping
target={false}]

Note also the need to use nogroupskip and a non-group style for the duplicates since the
group field will have been assigned in the first resource set if bib2gls was invoked with
--group. The grouping is appropriate for alphabetical ordering but not for order of use.

If you want different grouping for the duplicates, you can specify the field name to use in
which to store the group information using copy-action-group-field. Unlike secondary,
you will need to redefine \glsxtrgroupfield to the relevant field before you display the
glossary. The simplest way to do this is with the starred form of \printunsrtglossary. For
example, if copy-action-group-field={dupgroup} is added to the options for the second
resource set:

\printunsrtglossary* [type={copies},title={Duplicates},style={indexgroup}]
{\renewcommand{\glsxtrgroupfield}{dupgroup}}

This just does:

\begingroup
\renewcommand{\glsxtrgroupfield}{dupgroupl’
\printunsrtglossary[type={copies},title={Duplicates},

style={indexgroup}]

\endgroup

copy-to-glossary=(list)

This option can selectively copy an entry to a glossary after it has been defined. If the supplied
value (list) is empty, no copying is performed (except as a result of other options, such as
action or secondary). If set, the (list) argument is a list of string concatenations with
optional conditionals. Take care that constant strings are correctly delimited, as described
below, to ensure that they are not mistaken for field labels.

142

5.3 General Options

The evaluation of the target glossary label for each entry is performed while the . glstex
file is being written (after sorting) so all field values should be available in any field reference.
The action option is implemented first, so the selected entry will first either be defined or
copied according to action. If the copy-to-glossary instruction is successful, the entry
will then be copied to the target glossary using \bibglscopytoglossary.

The copy-to-glossary value should be a comma-separated list, where the syntax for
each item in the list is in the form:

(element-list) [(condition)]

where (element-list) is a string concatenation (see section 5.1) and (condition) is a complex
conditional (see section 5.2). For each (element-list) [(condition)] specification, if the con-
dition evaluates to false or if the (element-list) evaluates to null then the copy instruction
won’t be added.

For example, the following first sets the type to “ignored” for any entries that only have
ignored records and then copies all entries that don’t have the type field set to “ignored” to
the glossary labelled “index”:

\GlsXtrLoadResources[
ignored-type={ignored},
copy-to-glossary={"index" [type <> "ignored"] }
]

The fallback action for a missing field value is governed by the copy-to-glossary-missing
-field-action setting. The result of the string concatenation (if not null) is the label of the
target glossary:.

You can have multiple copy instructions to copy an entry to multiple glossaries. The defi-
nition of \bibglscopytoglossary will ensure that an entry will only be copied to the des-
ignated glossary if it isn’t already in the glossary’s internal list and will silently do nothing
if the glossary doesn’t exist.

Remember that constant strings need to be marked with braces or double-quote delimiters.
For example, if you want to copy all entries to the index glossary then either do:

copy-to-glossary={"index"}
or
copy-to-glossary={{index}}

Note that the outer braces are stripped by the resource option parser, which first splits the
(option)={(value)} list supplied via \GlsXtrLoadResources into (option) and (value) pairs,
and then parses each (option). So by the time that the copy-to-glossary option has its
value parsed, the value has become "index" or {index}, respectively, in the above two
examples.

Remember that the (value) itself may be a comma-separated list. The outer grouping hides
the inner list comma from the initial (option)={(value)} split. For example, to copy all entries
to the index and symbols glossaries:

143

5.3 General Options

copy-to-glossary={"index", "symbols"}
or
copy-to-glossary={{index}, {symbols}}

The following example will only copy entries to the index glossary if their actual entry
type is index:

copy-to-glossary={"index" [entrytype -> actual = "index"]}

Alternatively, to copy aliased custom entry types @person entries to a custom glossary
person and @place to a custom glossary place:

copy-to-glossary={
entrytype —-> original

[entrytype -> original =/person|place/]
}

If the glossary types don’t conveniently match the entry type, the instructions can be split
into a list. For example:

copy-to-glossary={

"abbreviations" [entrytype -> actual = "abbreviation"],
"symbols" [entrytype -> actual = "symbol"],
"numbers" [entrytype -> actual = "number"],

}

Each instruction in the list will be tried and the copy instruction will only be written if the
condition evaluates to true and a non-null value is successfully returned.
copy-to-glossary-missing-field-action=(value)

This option indicates what to do if a source field identified in copy-to-glossary is missing.
The value may be one of:

« skip: return null;

« fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise return null (default);

« empty: treat the missing value as empty.

Returning null will result in the copy instruction being omitted.

144

5.4 Selection Options

5.4 Selection Options

src=(list)

This identifies the .bib files containing the entry definitions. The value should be a comma-
separated list of the required . bib files. These may either be in the current working directory
or in the directory given by the —-dir switch or on TgX’s path (in which case kpsewhich will
be used to find them). The .bib extension may be omitted. Remember that if (list) contains
multiple files it must be grouped to protect the comma from the (options) list.

For example:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

indicates that bib2gls must read the filesentries-terms.biband entries-symbols.bib.

If src is omitted or if the value is empty, it’s assumed to be the same as the basename
of the .glstex file. This is \jobname for the first instance of \GlsXtrLoadResources.
Remember that subsequent uses of \GlsXtrLoadResources append a suffix \ jobname-(n),
so in general it’s best to always supply src (or use \glsbibdata), except for small test cases
with a single resource command.

With old ETEX kernels, if you have non-ASCII characters in the .bib filename but aren’t
using XgKTEX or LuaIgX, then you will need to use \detokenize to prevent expansion
when the information is written to the .aux file. Newer BIEX kernels have better support
for UTF-8. Similarly for any special characters that need protecting (although it’s better not
to use special characters in filenames). For example:

\documentclass{article}

\usepackage [T2A] {fontenc}

\usepackage [utf8]{inputenc}
\usepackage [russian] {babel}
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources|[
src={\detokenize{xupunnumalt},’ data in xupunnuna.bib
selection={all}

\begin{document}
\printunsrtglossary
\end{document}

selection=(value)

By default all entries that have records in the .aux file will be selected as well as all their
dependent entries. The dependent entries that don’t have corresponding records on the first
KEIgX run, may need an additional build to ensure their location lists are updated.

145

5.4 Selection Options

Remember that on the first KIgX run the .glstex files don’t exist. This means that the
entries aren’t defined at that point. The record package option additionally switches on
the undefaction={warn} option, which means that you’ll only get warnings rather than
errors when you reference entries in the document. You can’t use \glsaddall with bib2gls
because the glossary lists are empty on the first run, so there’s nothing for \glsaddall to
iterate over. Instead, if you want to add all defined entries, you need to instruct bib2gls to
do this with the selection option. The following values are allowed:

recorded and deps: add all recorded entries and their dependencies (default).

recorded and deps and see: as above but will also add unrecorded entries whose
see, seealso or alias field refers to a recorded entry.

recorded and deps and see not also: as above but will add unrecorded entries
whose see or alias (but not seealso) field refers to a recorded entry.

recorded no deps: add all recorded entries but not their dependencies. The de-
pendencies include those referenced in the see or seealso field or fields identified
by dependency-fields, parent entries and those found referenced with commands
like \gls in the field values that are parsed by bib2gls. With this setting, parents
will be omitted unless they’ve been referenced in the document through commands
like \gls. This setting won’t add any see or seealso lists to the location list. The
given field will be set, so you can access the information, but there’s no guarantee that
the cross-referenced entry will have been selected. The alias cross-reference will be
added to the location list but you will need to ensure that the target is also selected (or
use alias={omit} to suppress it).

recorded and ancestors: this is like the previous setting but parents are added
even if they haven’t been referenced in the document. The other dependent entries are
omitted if they haven’t been referenced in the document. The above notes regarding
the cross-reference lists also applies.

deps but not recorded: this first selects entries as though recorded and deps
had been used, but after all ancestors and dependencies have been added it then re-
moves all entries that have records. This means that you end up with only the un-
recorded dependencies. (Recorded entries will need to be selected in a different re-
source set.)

ancestors but not recorded: this first selects entries as though recorded and
ancestors had been used, but after all ancestors have been added it then removes
all entries that have records. This means that you end up with only the unrecorded
ancestors. (Recorded entries will need to be selected in a different resource set.) See
the sample-nested.tex example document.

selected before: select any entries that have been selected in a previous resource
set. This is intended for use with action={copy} to copy entries to another glossary

146

5.4 Selection Options

as an alternative to (or in addition to) the secondary option. Note that if you make
any modifications to the fields (such as case-changing) the modification won’t be saved
to the . glstex file. This option can’t be used in the first resource set.

+ all: add all entries found in the .bib files supplied in the src option.

The (value) must be supplied.
For example, suppose the file entries.bib contains:

@index{run}
@index{sprint,see={run}}
@index{dash,see={sprint}}

If the document only references the “run” entry (for example, using \gls{run}) then:

o If selection={recorded and deps}, only the “run” entry is selected. The “run”
entry has a record, so it’s selected, but it has no dependencies. Neither “sprint” nor
“dash” have records, so they’re not selected.

o Ifselection={recorded and deps and see}, the “run” and “sprint” entries are se-
lected, but not the “dash” entry. The “run” entry is selected because it has a record. The
“sprint” entry doesn’t have a record but its see field includes “run”, which does have a
record, so “sprint” is also selected. The “dash” entry doesn’t have a record. Its see field
references “sprint”. Although “sprint” has been selected, it doesn’t have any records,
so “dash” isn’t selected.

The above is just an example. The circuitous redirection of “dash” to “sprint” to “run” is
unhelpful to the reader and is best avoided (especially for an index where there are no ac-
companying descriptions and no location list for the intermediate “sprint”). A better method
would be:

@index{run}
@index{sprint,see={run}}
Oindex{dash,see={run}}

The selection={recorded and deps and see} in this case will select all three entries,
and the document won’t send the reader on a long-winded detour.
Now suppose that the file entries.bib contains:

Qentry{run,
name = {run},
description={move fast using legs}

}

@entry{sprint,
name = {sprint},
description={run at full speed over short distance},

147

5.4 Selection Options

seealso={run}

3

@entry{dash,

name = {dash},

description={run in a great hurry},
seealso={sprint}

}

and suppose the document only references “dash” (for example, with \gls{dash}), then
with the default selection={recorded and deps} “dash” will be selected because it has
a record, and “sprint” will be selected because “dash” requires it (for the cross-reference),
and “run” will be selected because “sprint” requires it (for the cross-reference). In this case,
neither “sprint” nor “run” have a location list but they do both provide additional information
for the reader in their descriptions.

A better method here would be for each entry to have a cross-reference list that includes
all related terms:

Q@entry{run,

name = {run},

description={move fast using legs},
seealso={sprint,dash}

}

Q@entry{sprint,

name = {sprint},

description={run at full speed over short distance},
seealso={run,dash}

}

@entry{dash,

name = {dash},

description={run in a great hurry},
seealso={sprint,run}

}

Now, whichever one is indexed in the document, the other two will automatically be selected.

match=(key=value list)

It’s possible to filter the selection by matching field values. The value is required for this key
but may be empty, which indicates that the setting is switched off, otherwise (key=value list)
should be a (key)=(regexp) list, where (key) is the name of a field or id for the entry’s label
or entrytype for the bib2gls entry type (as in the part after @ identifying the entry not the

148

5.4 Selection Options

type field identifying the glossary label). If you've used entry-type-aliases, this refers
to the target entry type not the original entry type specified in the .bib file.

Filtering options don’t apply directly to @compoundset entries (or any of the other
special entry types described in section 4.4), so you can’t match the entry type to
@compoundset. However, if any elements within a compound entry are filtered then
the compound entry won’t be written to the .glstex file. Use the compound-write
—def option to determine whether or not to write the compound entry to the resource

file.

The (regexp) part should be a regular expression conforming to Java’s Pattern class [5].
The pattern is anchored (0o . * matches oops but not loops) and (regexp) can’t be empty.
Remember that TgX will expand the option list as it writes the information to the .aux file
so take care with special characters. For example, to match a literal period use \string\.
not \ . (backslash dot).

If the field is missing its value it is assumed to be empty for the purposes of the pattern
match even if it will be assigned a non-empty default value when the entry is defined. If the
field is unrecognised by bib2gls any reference to it in (key=value list) will be ignored.

If a field is listed multiple times, the pattern for that field is concatenated using:

(?: (pattern-1)) | (7 : (pattern-2))

where (pattern-1) is the current pattern for that field and (pattern-2) is the new pattern. This
means it performs a logical OR. For the non-duplicate fields the logical operator is given by
match-op. For example:

match-op={and},

match={
category=animals,
topic=biology,
category=vegetables

}
This will keep all the selected entries that satisfy:

« category matches (7:animals) | (7:vegetables)

(the category is either animals or vegetables)
AND

+ topic (custom key provided by user) is biology.

and will discard any entries that don’t satisfy this condition. A message will be written to
the log file for each entry that’s discarded.

Patterns for unknown fields will be ignored. If the entire list consists of patterns for un-
known fields it will be treated as match={}. That is, no filtering will be applied. In the above
example, the custom topic key must be provided before the first \GlsXtrLoadResources
with \glsaddkey or \glsaddstoragekey.

149

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

5.4 Selection Options

match-op=(value)

If the value of match contains more than one (key)=(pattern) element, the match-op deter-
mines whether to apply a logical AND or a logical OR. The (value) may be either and or or.
The default is match-op={and}.

not-match=_key=value list)

If match={(key=value list)} would cause an entry to be selected then not-match={(key=
value list)} would cause that entry to be ignored. The value is required for this key but
may be empty, which indicates that the setting is switched off. If you have both match and
not-match in the same resource set, the last one listed takes precedence.

Filtering options don’t apply directly to @compoundset entries (or any of the other
special entry types described in section 4.4), so you can’t match the entry type to
@compoundset. However, if any elements within a compound entry are filtered then
the compound entry won’t be written to the .glstex file. Use the compound-write
—def option to determine whether or not to write the compound entry to the resource

file.

match-action=(value)

The default behaviour with match or not-match is to filter the selection. This may be
changed to append to the selection instead. The (value) may be one of:

« filter: (default) filter selection;

 add: append any matches (with match) or non-matches (with not-match) to the se-
lection. This setting can’t be used with sort={use}.

For example, if I want to select all record entries and their dependencies, but I also want to
make sure that any entries with the category set to important are always selected regardless
of whether or not they have any records:

\GlsXtrLoadResources[
src={entries},’ data in entries.bib
match-action={add},
match={category=important}

]

limit=(number)

If (number) is greater than 0 then this will truncate the list of selected entries after sorting
to (number) (if the list size is greater than that value). The transcript will show the message:

Truncating according to limit=(number)

150

5.5 Hierarchical Options

When used with shuffle, this provides a means of randomly selecting at most (number)
entries. The default setting is 1imit={0} (no truncation). A negative value of (number) is
not permitted.

If you have any dual entries, then the truncation will be applied to the combined list of
primary and duals if dual-sort={combine} otherwise each list will be truncated separately
by (number), which results in a maximum of 2 X (number). Remember that tertiary entries
are created when dual entries are defined in the .glstex file, so this will increase the total
number of entries.

5.5 Hierarchical Options

Hierarchy is established by setting the parent field to the label of the parent entry. The
parent and child entries are sorted together, but hierarchical comparators will place child
entries after their corresponding parent.

The glossaries package provides \ifglshasparent to determine whether or not an entry
has the parent field set. If also provides \ifglshaschildren, but this command is inef-
ficient as it has to iterate over all entries to find an entry with the parent field set to the
relevant label. It’s also non-trivial to determine which child entries have been included in
the glossary with makeindex or xindy. bib2gls can provide this information with some of
the options described in this section.

It’s also possible to flatten entries (that is, remove the hierarchical information) or just
flatten lonely child entries.

save-child-count=(boolean)

This is a boolean option. The default setting is save-child-count={false}. If save-child
—count={true}, each entry will be assigned a field called childcount with the value equal
to the number of child entries that have been selected. As from version 1.5, this option also
creates the childlist field for entries that have children selected. This field is in etoolbox’s
internal list format and can be iterated over using \glsxtrfieldforlistloop.

The assignment is done using \GlsXtrSetField so there’s no associated key. You can
test if the field is set and non-zero using:

\GlsXtrIfHasNonZeroChildCount{(entry label)}{(true)}{(false)}

which is provided with glossaries-extra-bib2gls v1.31+. Within (true), you can access the ac-
tual value with \glscurrentfieldvalue. If save-child-count={false}, this command
will do (false) as the childcount field won’t be set.

For example, suppose entries.bib contains:

@index{birds}

@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}

151

5.5 Hierarchical Options

@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amethyst,parent={minerals}}
O@index{gypsum,parent={minerals}}
@index{gold,parent={minerals}}

and the document contains:

\documentclass{article}
\usepackage [record,style={indexgroup}]{glossaries-extra}
\GlsXtrLoadResources[src={entries},save-child-count]

\begin{document}
\gls{duck} and \gls{goose}.
\gls{quartz}, \gls{corundum}, \gls{amethyst}.

\printunsrtglossaries
\end{document}

Then the . glstex file will contain:

\GlsXtrSetField{birds}{childcount}{2}
\GlsXtrSetField{duck}{childcount}{0}
\glsxtrfieldlistadd{birds}{childlist}{duck}
\GlsXtrSetField{goose}{childcount}{0}
\glsxtrfieldlistadd{birds}{childlist}{goose}
\GlsXtrSetField{minerals}{childcount}{3}
\GlsXtrSetField{amethyst}{childcount}{0}
\glsxtrfieldlistadd{minerals}{childlist}{amethyst}
\GlsXtrSetField{corundum}{childcount}{0}
\glsxtrfieldlistadd{minerals}{childlist}{corundum}
\GlsXtrSetField{quartz}{childcount}{0}
\glsxtrfieldlistadd{minerals}{childlist}{quartz}

Note that although birds has three children defined in the .bib file, only two have been
selected, so the child count is set to 2. Similarly the minerals entry has five children defined
in the .bib file, but only three have been selected, so the child count is 3.

The following uses the post-description hook to show the child count in parentheses:

\GlsXtrLoadResources[src={entries},category={general},save-child-count]

\glsdefpostdesc{general}{’

152

5.5 Hierarchical Options

\glsxtrifhasfield{childcount}{\glscurrententrylabel},
{ (child count: \glscurrentfieldvalue.)}’
{3

}

\glsxtrifhasfield requires at least glossaries-extra v1.19. It’s slightly more efficient than
\ifglshasfield provided by the base glossaries package, and it doesn’t complain if the
entry or field don’t exist, but note that \glsxtrifhasfield implicitly scopes its content.
Use the starred version to omit the grouping. With glossaries-extra v1.31+ you can perform
a numerical test with \GlsXtrIfFieldNonZero or \GlsXtrIfFieldEqNum.

save-sibling-count=(boolean)

This is a boolean option. The default setting is save-sibling-count={false}. This is
like save-child-count but saves the sibling count in siblingcount and the sibling list in
siblinglist. As with the childlist, the sibling list is in etoolbox’s internal list format. The
sibling information is only saved for entries that have a parent.

The advantage with siblinglist over accessing the parent’s childlist is that the entry
itself is excluded from the list.

save-root-ancestor=(boolean)

This is a boolean option. The default setting is save-root-ancestor={false}. If true, the
entry’s top-most ancestor will be saved in the entry’s rootancestor internal field. If the
entry doesn’t have a parent (that it, the entry itself is the root) then the rootancestor field
won’t be set.

flatten=(boolean)

This is a boolean option. The default value is flatten={false}. If flatten={true}, the
sorting will ignore hierarchy and the parent field will be omitted when writing the defini-
tions to the . glstex file, but the parent entries will still be considered a dependent ancestor
from the selection point of view.

Note the difference between this option and using ignore-fields={parent} which will
remove the dependency (unless a dependency is established through another field).

flatten-lonely=(value)

This may take one of three values: false (default), presort and postsort. The value must
be supplied.

Unlike the f1atten option, which completely removes the hierarchy, the flatten-lonely
option can be used to selectively alter the hierarchy. In this case only those entries that have
a parent but have no siblings are considered. This option is affected by the f1atten-lonely
-rule setting. The conditions for moving a child up one hierarchical level are as follows:

153

5.5 Hierarchical Options

The child must have a parent, and

« the child can’t have any selected siblings, and

if flatten-lonely-rule={only unrecorded parents} then the parent can’t have
a location list, where the location list includes records and see or seealso cross-
references (for the other rules the parent may have a location list as long as it only
has the one child selected).

If the child is selected for hierarchical adjustment, the parent will be removed if:
« The parent has no location list, and
o flatten-lonely-rule isn’t set tono discard.

The value of flatten-lonely determines whether the adjustment should be made before
sorting (presort) or after sorting (postsort). To disable this function use flatten-lonely
={false}.

For example, suppose the file entries.bib contains:

@index{birds}

@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}
@index{chicken,parent={birds}}

@index{vegetable}
@index{cabbage,parent={vegetable}}

O@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amethyst,parent={minerals}}
@index{gypsum,parent={minerals}}

@index{aardvark}
@index{bard}
@index{buzz}

Oindex{item}
@index{subitem,parent={item}}
@index{subsubitem,parent={subitem}}

and suppose the document contains:

\documentclass{article}

154

5.5 Hierarchical Options

\usepackage [record,style={indexgroup}]l{glossaries-extra}
\GlsXtrLoadResources[src={entries.bib}]

\begin{document}

\gls{duck}.

\gls{quartz}, \gls{corundum}, \gls{amethyst}.
\gls{aardvark}, \gls{bard}, \gls{buzz}.
\gls{vegetable}, \gls{cabbagel}.
\gls{subsubitem}.

\printunsrtglossaries
\end{document}

Although the duck entry has siblings in the entries.bib file, none of them have been
recorded in the document, nor has the parent birds entry.

This document hasn’t used flatten-lonely, so the default flatten-lonely={false}
is assumed. This results in the hierarchical structure:

A

aardvark 1

B
bard 1
birds
duck 1

buzz 1

|
item
subitem

subsubitem 1

M

minerals
amethyst 1
corundum 1

quartz 1

155

5.5 Hierarchical Options

\'
vegetable 1
cabbage 1

(The “1” in the above indicates the page number.) There are some entries here that look a
little odd: duck, cabbage and subsubitem. In each case they are a lone child entry. It would
look better if they could be compressed, but I don’t want to use the f1atten option, as I still
want to keep the mineral hierarchy.

If Inow add flatten-lonely={postsort}:

\GlsXtrLoadResources[src={entries.bib},flatten-lonely={postsort}]

the hierarchy becomes:

A

aardvark 1

B
bard 1
birds, duck 1

buzz 1

item, subitem, subsubitem 1

M

minerals
amethyst 1
corundum 1
quartz 1

Vv

vegetable 1
cabbage 1

The name field of the duck entry has been set to:

name={\bibglsflattenedchildpostsort{birds}{duck}}

156

5.5 Hierarchical Options

the text field has been set to:
text={duck}

the group field is copied over from the parent entry (“B”), and the parent field has been
adjusted, moving duck up one hierarchical level. Finally, the former parent birds entry
has been removed (the default flatten-lonely-rule={only unrecorded parents} is
in effect).

The default definition of \bibglsflattenedchildpostsort formats its arguments so
that they are separated by a comma and space (“birds, duck”). If the text field had been set
in the original @index definition of duck, it wouldn’t have been altered. This adjustment
ensures that in the document \gls{duck} still produces “duck” rather than “birds, duck”.
(If the child and parent name fields are identical, the terms are considered homographs. See
below for further details.)

The subsubitem entry has also been adjusted. This was done in a multi-stage process,
starting with sub-items and then moving down the hierarchical levels:

+ The subitem entry was adjusted, moving it from a sub-entry to a top-level entry. The
name field was then modified to:

name={\bibglsflattenedchildpostsort{item}{subitem}}

This now means that the subsubitem entry is now a sub-entry (rather than a sub-sub-
entry). The subitem entry now has no parent, but at this stage the subsubitem entry
still has subitem as its parent.

+ The subsubitem entry is then adjusted moving from a sub-entry to a top-level entry.
The name field was then modified to:

name=
i
\bibglsflattenedchildpostsort
{
% name from former parent
\bibglsflattenedchildpostsort{item}{subitem},
Bl
{subsubitem}/, original name

3

The first argument of \bibglsflattenedchildpostsort is obtained from the name
field of the entry’s former parent (which is removed from the child’s set of ancestors).
This field value was changed in the previous step, and the change is reflected here.

This means that the name for subitem will be displayed as “item, subitem” and the
name for subsubitem will be displayed as “item, subitem, subsubitem”.

+ The parent entries item and subitem are removed from the selection as they have no
location lists.

157

5.5 Hierarchical Options

Note that the cabbage sub-entry hasn’t been adjusted. It doesn’t have any siblings but its
parent entry (vegetable) has a location list so it can’t be discarded. If I change the rule:

\GlsXtrLoadResources|[src={entries.bib},
flatten-lonely-rule={discard unrecorded},
flatten-lonely={postsort}

]

then this will move the cabbage entry up a level but the original parent entry vegetable
will remain:

A

aardvark 1

B
bard 1
birds, duck 1

buzz 1

item, subitem, subsubitem 1

M

minerals
amethyst 1
corundum 1

quartz 1

\
vegetable 1
vegetable, cabbage 1

Remember that f1atten-lonely={postsort} performs the adjustment after sorting. This
means that the entries are still in the same relative location that they were in with the orig-
inal flatten-lonely={false} setting. For example, duck remains in the B letter group
before “buzz”.

With flatten-lonely={presort} the adjustments are made before the sorting is per-
formed. For example, using:

158

5.5 Hierarchical Options

\GlsXtrLoadResources[src={entries.bib},
flatten-lonely-rule={discard unrecorded},
flatten-lonely={presort}

]

the hierarchical order is now:

A

aardvark 1

B
bard 1

buzz 1

Cc
cabbage 1

D
duck 1

M

minerals
amethyst 1
corundum 1

quartz 1

S

subsubitem 1

\
vegetable 1

This method uses a different format for the modified name field. For example, the duck entry
now has:

name={\bibglsflattenedchildpresort{duck}{birds}t}

159

5.5 Hierarchical Options

The default definition of \bibglsflattenedchildpresort simply does the first argument
and ignores the second. The sorting is then performed, but the interpreter recognises this
command and can deduce that the sort value for this entry should be duck, so “duck” now
ends up in the D letter group.

If you provide a definition of \bibglsflattenedchildpresort in the @preamble, it will
be picked up by the interpreter. For example:

@preamble{"\providecommand{\bibglsflattenedchildpresort}[2]{#1 (#2)}"}

Note that the text field is only changed if not already set. This option may have unpre-
dictable results for abbreviations as the name field (and sometimes the text field) is typically
set by the abbreviation style. Remember that if the parent entry doesn’t have a location list
and the rule isn’t set tono discard then the parent entry will be discarded after all relevant
entries and their dependencies have been selected, so any cross-references within the parent
entry (such as \gls occurring in the description) may end up being selected even if they
wouldn’t be selected if the parent entry didn’t exist.

With both presort and postsort, if the parent name is the same as the child’s name then
the child is considered a homograph and the child’s name is set to:

\bibglsflattenedhomograph{(name)}{(parent label)}

instead of the corresponding \bibglsflattenedchild..sort. This defaults to just (name).

flatten-lonely-rule=(value)

This option governs the rule used by flatten-lonely to determine which sub-entries (that
have no siblings) to adjust and which parents to remove. The value may be one of the fol-
lowing, where (condition) is the condition provided by flatten-lonely-condition:

only unrecorded parents Only the sub-entries that have a parent without a location list
(and have (condition) evaluate to true) will be altered. The parent entry will be removed
from the selection if the child entry is adjusted. This value is the default setting.

discard unrecorded This setting will adjust all sub-entries that have no siblings (and have
(condition) evaluate to true) regardless of whether or not the parent has a location
list. Only the parent entries that don’t have a location list will be removed from the
selection if the child entry is adjusted.

no discard This setting will adjust all sub-entries that don’t have siblings (and have (con-
dition) evaluate to true) regardless of whether or not the parent has a location list.
No entries will be discarded, so parent entries that don’t have a location list will still
appear in the glossary.

In the above, the location list includes records and cross-references obtained from the see or
seealso fields. See flatten-lonely for further details.

160

5.5 Hierarchical Options

flatten-lonely-condition={value)

The value may either be empty, to indicate true (the default), or a complex condition using
syntax described in section 5.2. After taking into account flatten-lonely and flatten
~lonely-rule, this option determines whether or not the child entry will be adjusted. If
the condition evaluates to false, the child entry won’t be adjusted.

For example, if both the parent entry and the child entry have long names, it may be better
to keep their hierarchy. The following will only flatten lonely entries where both the child
name and the parent name have less then 25 characters:

flatten-lonely={postsort},
flatten-lonely-condition={\LEN{parent -> name} < 25 & \LEN{name} < 25}

Alternatively, for a combined length of less than 50 characters:

flatten-lonely={postsort},
flatten-lonely-condition={\LEN{parent -> name + name} < 50}

This doesn’t include the number of characters taken up by the separator but the maximum
value can be adjusted to allow for that, given a constant string separator.

flatten-lonely-missing-field-action={value)

This option indicates what to do if a source field identified in flatten-lonely-condition
is missing. The value may be one of:

« skip: return null;

« fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise return null (default);

« empty: treat the missing value as empty:.

Returning null will result in the flatten lonely instruction being omitted.

strip-missing-parents=(boolean)

The glossaries package requires that all child entries must be defined after the parent entry.
An error occurs otherwise, so bib2gls will omit the parent field if it can’t be found in the
given resource set. However, when the default strip-missing-parents={false} is on,
this omission only occurs while writing the definitions in the .glstex file (after selection
and sorting).

Sorting is performed hierarchically and the group field is set accordingly for the top-level
entries (but not for child entries), which means that an entry with a parent field will be
treated by the sort method as a child entry. This can lead to a strange result, which bib2gls
warns about:

Parent '(parentid)' not found for entry (child-id)

161

5.5 Hierarchical Options

This is the default behaviour as it may simply be a result of a typing mistake in the parent
field. If you actually want missing parents to be stripped before sorting (but after the selec-
tion process) then use strip-missing-parents={true}. If you want all parents stripped
then use flatten or ignore-fields={parent} instead. As from version 1.4, if you want
bib2gls to create the missing parents, then you can use missing-parents={create}.

missing-parents=(value)

As an alternative to strip-missing-parents, as from version 1.4 you can now usemissing
-parents={(value)} where (value) may be one of:

« strip: this is equivalent to strip-missing-parents={truel;
« warn: this is equivalent to the default strip-missing-parents={false};

+ create: this will create a new @index entry with the missing parent’s label (after
it’s been processed by options such as labelify) with the name obtained from the
original value of the parent field (before being processed by options like 1abelify).
If the child entry has the type field set, then the new parent entry will be given the
same value. The category for the new parent entry can be assigned with missing
-parent-category.

For example, consider the books.bib file which contains entries like:

@entry{ubik,
name={Ubik},
description={novel by Philip K. Dick},
identifier={book},
author={\sortmediacreator{Philip K.}{Dick}},
year={1969}

}

then the field alias:
field-aliases={author=parent}
will treat:
author={\sortmediacreator{Philip K.}{Dick}},
as though it had been defined as:
parent={\sortmediacreator{Philip K.}{Dick}},
This can be converted into a label with the options:

labelify={parent},
labelify-replace={

{[\string\.]1}{}
}

162

5.5 Hierarchical Options

If the interpreter has been provided with the definition:
\providecommand*{\sortmediacreator}[2]{#2 #1}

then the parent field for the ubik entry will become DickPhilipK but the original value
is stored internally when missing-parents={create} is set so that it can be used as the
name if the parent needs to be created. Once all the entries have been processed, if ubik has
been selected but no entry can be found with the label DickPhilipK then a new entry will
be added as though it had been defined with:

@index{DickPhilipK,
name={\sortmediacreator{Philip K.}{Dick}}
}

This is an alternative approach to the sample-authors.tex document from the examples
chapter.
missing-parent-category=(value)

If a missing parent entry is created through the use of missing-parents={create} then
the category field can be assigned to the new parent entry with this option. The (value)
may be one of:

« same as child: the parent entry’s category field is set to the same value as the
child’s (if set);

« same as base: the parent entry’s category is set to the base name of the .bib file
that provided the child entry’s definition;

» no value or false: don’t set the category field;

« (label): the parent entry’s category field is set to (label) (which shouldn’t contain
any special characters).

The default setting is missing-parent-category={no valuel.

group-level=(value)

If letter group formation is enabled (see group, group-formation and --group) then the
default behaviour is to only assign the group label for top-level entries. This option allows
the group label to be assigned to sub-entries if sub-groups are required. The value may be
one of the following:

« (n): only assign the group for level (n) entries;
« >(n): only assign the group for entries with a level greater than (n);

« >=(n): only assign the group for entries with a level greater than or equal to (n);

163

5.5 Hierarchical Options

« <(n): only assign the group for entries with a level less than (n);
+ <=(n): only assign the group for entries with a level less than or equal to (n);
« all: equivalent to group-level={>=0}.

The default setting is group-level={0}. If no value is provided, group-level={all} is
assumed. The hierarchical levels start at 0 (top-level entry). For any value other than group
~level={0}, the parent entry label will be included in the group label.

The hierarchical group titles are formatted according to \bibglshiersubgrouptitle.
If the group title would usually be set with the command \bibglsset..group for top-level
entries then the hierarchical group title would be set with the analogous \bibglsset..group
command. For example, letter groups are normally set with \bibglssetlettergrouptitle
but hierarchical letter groups are set with \bibglssetlettergrouptitlehier.

If the -~—no-group setting is on then this option has no effect.

Any value other than the default group-level={0} requires glossaries-extra v1.49+,
which provides \glssubgroupheading.

Sub-groups are implemented by the glossary style command:

\glssubgroupheading{(previous level)}{ (level) }{(parent-label) }{(group-label) }

The glossaries-extra package automatically implements:
\renewcommand*{\glssubgroupheading} [4]{\glsgroupheading{#4}}

whenever a style is set, so that if the style doesn’t provide a definition for this command, it
will behave like \glsgroupheading.

merge-small-groups={n)

Merges consecutive small groups that have less than (n) entries. The default is merge-small
-groups={0}, which switches off this action. If (n) is omitted, merge-small-groups={1}
is assumed.

This setting only has an effect if group formation is enabled. If hierarchical sub-groups are
enabled (group-level) then merging is only performed on consecutive small groups within
the same hierarchical level. Any child entries that aren’t in their own sub-group are included
in the higher level group count.

For example, suppose you have a large number of entries in most of the letter groups:

O@index{aardvark}
@index{ant}
@index{alligator}
@index{ape}

% etc

164

5.6 Master Documents

but you only have one entry in each of the “X”, “Y” and “Z” groups:
@index{xylem}

@index{yak}

@index{zebra}

then you may prefer to merge these entries into a single group:
\GlsXtrLoadResources [merge-small-groups]

The title of this merged group is obtained from \bibglsmergedgrouptitle (or \bibgls-
mergedgrouptitle if hierarchical groups have been enabled with group-level). For the
above example, the merged letter group would have the title “X, Y, Z”. If there are more than
three groups then the middle group titles are replace with an ellipsis. For example, if there
is also only one entry in the “W” letter group, then the merged title would be “W...., Z”.

The small groups must be consecutive (there is no group between them) and on the same
hierarchical level in order to be merged. In the above example, if the yak entry isn’t selected
so that there is no “Y” letter group, then the “X” and “Z” groups can be merged (with the
merged title “X, Z”). If, on the other hand, extra entries occur in the “Y” letter group, so
that it is larger than the value of merge-small-groups, then “X” and “Z” can no longer be
merged.

5.6 Master Documents

Suppose you have two documents mybook.tex and myarticle.tex that share a common
glossary that’s shown in mybook.pdf but not in myarticle.pdf. Furthermore, you’'d like
to use hyperref and be able to click on a term inmyarticle.pdf and be taken to the relevant
page in mybook. pdf where the term is listed in the glossary.

This can be achieved with the targeturl and targetname category attributes. For example,
without bib2gls the file mybook. tex might look like:

\documentclass{book}

\usepackage [colorlinks]{hyperref}

\usepackage{glossaries-extra}

\makeglossaries
\newglossaryentry{sample}{name={sample},description={an examplel}}
\begin{document}

\chapter{Example}

\gls{sample}.

\printglossaries
\end{document}

165

5.6 Master Documents

The other document myarticle.tex might look like:

\documentclass{article}
\usepackage [colorlinks] {hyperref}
\usepackage{glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\newglossaryentry{sample}{type=external,category=external,
name={sample},description={an example}}

\begin{document}
\gls{sample}.
\end{document}

In this case the main glossary isn’t used, but the category attributes allow a mixture of inter-
nal and external references, so the main glossary could be used for the internal references.
(In which case, \makeglossaries and \printglossaries would need to be added back to
myarticle.tex.)

Note that both documents had to define the common terms. The above documents can be
rewritten to work with bib2gls. First a . bib file needs to be created:

@entry{sample,
name={sample},
description={an example}

}

Assuming this file is called myentries.bib, then mybook.tex can be changed to:

\documentclass{book}
\usepackage [colorlinks] {hyperref}
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources [src={myentries}]
\begin{document}

\chapter{Example}

\gls{sample}.

\printunsrtglossaries
\end{document}

and myarticle.tex can be changed to:

166

5.6 Master Documents

\documentclass{article}
\usepackage [colorlinks] {hyperref}
\usepackage [record] {glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\GlsXtrLoadResources[
src={myentries},
sort={none},
type={externall,
category={external}

]

\begin{document}
\gls{sample}.
\end{document}

Most of the options related to sorting and the glossary format are unneeded here since the
glossary isn’t being displayed. This may be sufficient for your needs, but it may be that
the book has changed various settings that have been written to mybook. glstex but aren’t
present in the .bib file (such as short-case-change={uc}). In this case, you could just
remember to copy over the settings from mybook. tex to myarticle. tex, but another pos-
sibility is to simply make myarticle.tex input mybook.glstex instead of using \GlsXtr-
LoadResources. This can work but it’s not so convenient to set the label prefix, the type
and the category. The master option allows this, but it has limitations (see below), so in
complex cases (in particular different label prefixes combined with hierarchical entries or
cross-references) you’ll have to use the method shown in the example code above.

master=(name)

This option will disable most of the options that relate to parsing and processing data con-
tained in .bib files (since this option doesn’t actually read any .bib files). It also can’t be
used with action={copy} oraction={define or copy}. A value of false will switch off
this setting (the default).

The use of master isn’t always suitable. In particular if any of the terms cross-reference
each other, such as through the see or seealso field or the parent field or using commands
like \gls in any of the other fields when the labels have been assigned prefixes. In this case
you will need to use the method described in the example above.

The (name) is the name of the .aux file for the master document without the extension
(in this case, mybook). It needs to be relative to the document referencing it or an absolute
path using forward slashes as the directory divider. Remember that if it’s a relative path, the
PDF files (mybook . pdf and myarticle.pdf) will also need to be located in the same relative

167

5.6 Master Documents

position.

When bib2gls detects the master option, it won’t search for entries in any . bib files (for
that particular resource set) but will create a . glstex file that inputs the master document’s
.glstex files, but it will additionally temporarily adjust the internal commands used to de-
fine entries so that the prefix given by label-prefix, the glossary type and the category
type are all automatically inserted. If the type or category options haven’t been used, the
corresponding value will default to master. The targeturl and targetname category attributes
will automatically be set, and the glossary type will be provided using \provideignored-
glossary*{(type)} (even if ——no-provide-glossaries is set).

The above myarticle.tex can be changed to:

\documentclass{article}
\usepackage [colorlinks] {hyperref}
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources[label-prefix={book.},master={mybook}]

\begin{document}
\gls{book.sample}.
\end{document}

There are some settings from the master document that you still need to repeat in the
other document. These include the label prefixes set when the master document loaded the
resource files, and any settings in the master document that relate to the master document’s
entries.

For example, if the master document loaded a resource file with 1abel-prefix={term.}
then you also need this prefix when you reference the entries in the dependent document in
addition to the label-prefix for the dependent document. Suppose mybook. tex loads the
resources using;:

\GlsXtrLoadResources[src={myentries},label-prefix={term.}]

and myarticle.tex loads the resources using:
\GlsXtrLoadResources[label-prefix={book.},master={mybook}]

Then the entries referenced in myarticle.tex need to use the prefix book.term. as in:
This is a \gls{book.term.sample} term.

Remember that the category labels will need adjusting to reflect the change in category
label in the dependent document.
For example, if mybook. tex included:

\setabbreviationstyle{long-short-sc}

then myarticle.tex will need:

168

5.7 Field and Label Options

\setabbreviationstyle[master]{long-short-sc}

(change master to (value) if you have used category={(value)}). You can, of course, choose
a different abbreviation style for the dependent document, but the category in the optional
argument needs to be correct.

master-resources=(list)

If the master document has multiple resource files then by default all the master document’s
.glstex files will be input. If you don’t want them all you can use master-resources to
specify only those files that should be included. The value (list) is a comma-separated list of
names, where each name corresponds to the basename of the applicable resource set. The file
\jobname . glstex is considered the primary resource file and the files \ jobname-(n) . glstex
(starting with (n) equal to 1) are considered the supplementary resource files.

For example, to just select the first and third of the supplementary resource files (omitting
the primary mybook. glstex):

\GlsXtrLoadResources[
master={mybook},
master-resources={mybook-1,mybook-3}

]

5.7 Field and Label Options

The options in this section may be used to set or adjust field values or labels. Some field values
are expected to be labels (such as group). These labels must not contain special characters
or commands, but it’s possible to convert a field value into a valid label using options such
as labelify.

Entry Labels
interpret-label-fields=(boolean)

This is a boolean option that determines whether or not the fields that may only contain labels
should have their values interpreted (parent, category, type, group, seealso and alias).
Although this option interprets commands within those fields, it doesn’t strip any characters
that can’t be used within a label. The see field isn’t included as it may optionally start with
[(tag)] where (tag) may legitimately contain EIEX code that shouldn’t be interpreted.

The default setting is interpret-label-fields={false}. Note that if this setting is on,
cross-resource references aren’t permitted. This setting has no effect if the interpreter has
been disabled.

Related settings are labelify and labelify-1list which can be used to strip content
that can’t be used in labels and may be used more generally for other fields. The labelify
and labelify-1ist options are performed before interpret-label-fields.

169

5.7 Field and Label Options

labelify=(list)

This option should take a comma-separated list of recognised field names as the value. (If
a field is present in both 1abelify and labelify-1list, then labelify-1ist takes prece-
dence.) Note that if this setting is on, cross-resource references aren’t permitted. The value
is required for this key but may be empty, which indicates an empty set of fields (that is, the
setting is switched off).

Each listed field will be converted into a string suitable for use as a label. (Not necessarily a
glossary entry label, but any label that may be used in the construction of a control sequence
name.)

The conversion is performed in the following order:

1.

If the interpreter is on and the field value contains any of the characters \ (backslash),
{ (begin group), } (end group), ~ (non-breakable space) or $ (maths shift), then the
value is interpreted.

Any substitutions that have been specified with 1abelify-replace are performed.

All characters that aren’t alphanumeric or the space character or any of the follow-
ing punctuation characters . (full stop), - (hyphen), + (plus), : (colon), ; (semi-colon),
| (pipe), / (forward slash), ! (exclamation mark), ? (question mark), * (asterisk), < (less
than), > (greater than), ~ (backtick), ' (apostrophe) or @ (at-sign) are stripped. If you
want to retain commas, use labelify-1ist instead. If you want to strip any of the al-
lowed punctuation, use labelify-replace to remove the unwanted characters. (Re-
member that babel can make some of these punctuation characters active, in which
case they need to be stripped.)

If bib2gls doesn’t allow non-ASCII characters in labels, the value is then decomposed
and all non-ASCII characters are removed. UTF-8 support is automatic if bib2gls
detects fontspec in the document’s transcript file, otherwise UTF-8 in labels will only
be supported if bib2gls detects that the versions of glossaries and glossaries-extra are
new enough to support it. To ensure better support for UTF-8 with pdfEIgX, make sure
you have a recent TgX distribution and up-to-date versions of glossaries and glossaries-
extra.

For example, suppose the .bib file contains:

@index{sample,
name={\AA ngstr\"om, \O stergaard, d'Arcy, and Fotheringay-Smythe}

b

Then:

\GlsXtrLoadResources[
src={entries},’, data in entries.bib
labelify={name}

]

170

5.7 Field and Label Options

will convert the name field into:

Angstrom stergaard d'Arcy and Fotheringay-Smythe

if bib2gls doesn’t support non-ASCII characters in labels otherwise it will be:
Angstrém @stergaard d'Arcy and Fotheringay-Smythe

Note that @ is considered an unmodified letter and so can’t be decomposed into a basic Latin
letter with a combining diacritic. It’s therefore removed completely from the ASCII label
version. Whereas A can be decomposed into “A” followed by the “combining ring above”
character and 6 can be decomposed into “o” followed by the “combining diaresis” character.
You can use labelify-replace to replace non-ASCII characters into the closest match.
Alternatively, switch to using XqiTEX or LuaFTEX.

You can use this option with replicate-fields if you need to retain the original:

\GlsXtrLoadResources[
src={entries},’, data in entries.bib
replicate-fields={name={useri}},
labelify={useri}

]

labelify-list=(list)

This option is like 1abelify but it retains commas, as it’s designed for fields that should
be converted into a comma-separated list of labels. Any empty elements are removed. For
example, with the .bib entry from above:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
replicate-fields={name={useri}},
labelify-list={useri}

]

will convert the user1 field into:

Angstrom, stergaard, d'Arcy, and Fotheringay-Smythe
or:

Angstrém, @stergaard, d'Arcy, and Fotheringay-Smythe

depending on whether or not UTF-8 labels are supported.

171

5.7 Field and Label Options

labelify-replace=(list)

This option takes a comma-separated list as a value with each element in the list in the form
{(regex)}{(replacement)} where (regex) is a regular expression (that conforms to Java’s Pat-
tern class [5]) and (replacement) is the replacement text. The value is required for this key
but may be empty, which indicates that the setting is switched off.

Remember that the argument of \GlsXtrLoadResources is expanded when written to
the .aux file so take care to protect any special characters. For example, to match a literal
full stop use \string\. rather than just \. (backslash dot).

In the (replacement) part, you can use \glscapturedgroup(n) to reference a captured
sub-sequence. For example:

labelify-replace={{([A-Z])\string\.}{\glscapturedgroupl}}

This removes any full stop that follows any of the characters A,...,Z. Alternatively, you can
just use \string\$ instead of \glscapturedgroup. If you want a literal dollar character,
you need to use \glshex24 (or \string\u24). This isn’t recommended for labels (since
special characters are automatically stripped), but sort-replace follows the same rules as
labelify-replace, and it may be needed for that.

You can’t use the \MGP quark (which expands to the \MGP identifier in a string concate-
nation) to identify the captured group in this context, as the replacement text needs
to use the correct regular expression syntax.

Both 1abelify and labelify-1ist use the labelify-replace setting to perform sub-
stitutions. For example, to replace the sub-string “ and ” (including spaces) with a comma:

\GlsXtrLoadResources[
src={entries},’, data in entries.bib
replicate-fields={name={useri}},
labelify-replace={{ and }{,}},
labelify-list={userl}

]

The earlier example will now end up as:

Angstrom, stergaard, d'Arcy,Fotheringay-Smythe
or:

Angstrém, @stergaard, d'Arcy,Fotheringay-Smythe

depending on whether or not UTF-8 labels are supported.

Note that this produces the same result regardless of whether or not the Oxford comma
is present as ,_,and,; would first be converted to , , and then the empty element is removed
resulting in a single comma.

You can have more than one replacement:

172

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

5.7 Field and Label Options

\GlsXtrLoadResources[
src={entries},’, data in entries.bib
replicate-fields={name={useri}},
labelify-replace={
{ and }{,},% first substitution
{['\string\-1}{},% second substitution
{\glshex00D8}{0}}% third substitution
+,
labelify-list={userl}
]

This additionally removes the space, apostrophe and hyphen characters (second substitution)
and replaces “@” (0x00D8) with “O” (third substitution) so the string now ends up as:

Angstrom,Ostergaard,dArcy,FotheringaySmythe
or:
Angstrém,Ostergaard,dArcy,FotheringaySmythe

depending on whether or not UTF-8 labels are supported.

label-prefix=(tag)

The label-prefix option prepends (tag) to each entry’s label. This (tag) will also be
inserted in front of any cross-references, unless they start with dual. or tertiary. or
ext(n). (where (n) is an integer). Use dual-prefix to change the dual label prefixes and
ext-prefixes to change the external label prefixes.

If you set 1abel-prefix and you define commands with \glsxtrnewglslike, then any
of those commands found in entry fields won’t have the 1abel-prefix inserted if the prefix
provided with the command starts with the prefix given in label-prefix. (This doesn’t
apply to other prefix options, such as dual-prefix, so take care if you have a mixture of
prefix options and prefixes identified with \glsxtrnewglslike.)

As from version 1.8, the primary label prefix is identified in the .glstex file with:

\bibglsprimaryprefixlabel{{prefix)}
For example, if the . bib file contains:

Qentry{bird,
name={bird},
description = {feathered animal, such as a \gls{duck} or \gls{goosel}}

by

Q@entry{waterfowl,
name={waterfowl},
description={Any \gls{bird} that lives in or about water},

173

5.7 Field and Label Options

see={[see also]{duck,goose}}
b

O@index{duck}

O@index{goose,plural="geese"}

Then if this .bib file is loaded with label-prefix={gls.} it’s as though the entries had
been defined as:

Qentry{gls.bird,

name={bird},

description = {feathered animal, such as a \gls{gls.duck} or \gls
{gls.goose}}
}

Qentry{gls.waterfowl,
name={waterfowl},
description={Any \gls{gls.bird} that lives in or about water},
see={[see also]{gls.duck,gls.goosel}}

}

@index{gls.duck,name={duck}}

@index{gls.goose,name={goose},plural="geese"}

Remember to use this prefix when you reference the terms in the document with com-
mands like \gls.

duplicate-label-suffix=(value)

The glossaries package doesn’t permit entries with duplicate labels (even if they’re in dif-
ferent glossaries). If you have multiple resource sets and an entry that’s selected in one re-
source set is also selected in another, by default, bib2gls will issue a warning, but it will still
write the entry definition to the .glstex file, which means you’ll also get a warning from
glossaries-extra and the duplicate definition will be ignored, but associated internal fields set
with commands like \GlsXtrSetField may still be set.

If you actually want the duplicate, you need to specify a suffix with duplicate-label
-suffix. This suffix is only set just before writing the entry definition to the .glstex file,
so it doesn’t affect selection criteria nor can label substitutions be performed in any cross-
references. Options such as set-widest that reference entry labels are incompatible as they
will use the unsuffixed label.

The actual suffix is formed from (value)(n) where (n) is an integer that’s incremented
in the event of multiple duplicates. For example, duplicate-label-suffix={.copy} will
change the label to (id).copy1 for the first duplicate of the entry whose label is (id), and
(id) . copy?2 for the second duplicate, etc.

174

5.7 Field and Label Options

record-label-prefix=(tag)

If set, this option will cause bib2gls to pretend that each record label starts with (tag), if it
doesn’t already. For example, suppose the records in the .aux file are:

\glsxtr@record{bird}{}{page}{glsnumberformat}{1}
\glsxtrOrecord{waterfowl}{}{page}r{glsnumberformat}{1}
\glsxtr@record{idx.duck}{}{page}t{glsnumberformat}{1}
\glsxtr@record{idx.goose}{}{page}r{glsnumberformat}{1}

The use of record-label-prefix={idx.} makes bib2gls act as though the records were
given as:

\glsxtr@record{idx.bird}{}{page}t{glsnumberformat}{1}
\glsxtr@record{idx.waterfowl}{}{page}t{glsnumberformat}{1}
\glsxtrOrecord{idx.duck}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.goose}{}{paget{glsnumberformat}{1}

cs-label-prefix=(tag)

If you have commands such as \gls{(label)} or \glstext{(label)} in field values (in situa-
tions where nested link text won’t cause a problem) the (label) will be converted as follows:

« if (label) starts with dual. then dual. will be replaced by the dual-prefix value;

« if (label) starts with tertiary. then tertiary. will be replaced by the tertiary
-prefix value;

« if (label) starts with ext(n). then ext(n). will be replaced by the corresponding ext
-prefixes setting (if cross-resource reference mode is enabled, see section 1.5);

« if (label) doesn’t start with one of the above recognised prefixes then, if cs-label
-prefix hasbeen used the supplied value will be inserted otherwise the 1abel-prefix
setting will be inserted.

For example, given:

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{duck} or \gls{goose}}

}

then if label-prefix={idx.} is set but cs-label-prefix isn’t included in the resource
option list this will convert the description field to:

description = {feathered animal, such as a \gls{idx.duck} or
\gls{idx.goose}}

However with cs-1label-prefix={gls.} the description field will be converted to:

175

5.7 Field and Label Options

description = {feathered animal, such as a \gls{gls.duck} or
\gls{gls.goosel}}

regardless of the 1abel-prefix setting. Whereas if the original entry definition is:

Qentry{bird,

name={bird},

description = {feathered animal, such as a \gls{dual.duck} or
\gls{dual.goosel}}
}

then dual. will be replaced by the value of the dual-prefix option regardless of the cs
—-label-prefix setting.

The cs-label-prefix setting doesn’t affect labels in the fields that have an entry label
or label list as the value (parent, alias, see and seealso).

ext-prefixes={(list)

Any cross-references in the . bib file that start with ext(n) . (where (n) is a positive integer)
will be substituted with the (n)th tag listed in the comma-separated (list). If there aren’t
that many items in the list, the ext(n). will simply be removed. The default setting is an
empty list, which will strip all ext(n). prefixes. Remember that cross-resource reference
mode needs to be enabled for this option to work (see section 1.5).

As from version 1.8, the external label prefixes are identified in the . glstex file with:

\bibglsexternalprefixlabel{(n)}{(prefix)}
For example, suppose the file entries-terms.bib contains:

Qentry{set,

name={set},

description={collection of values, denoted \gls{extl.set}}
}

and the file entries-symbols.bib contains:

O@symbol{set,
name={\ensuremath{\mathcal{S}}},
description={a \gls{extl.set}}

3

These files both contain an entry with the label set but the description field includes
\gls{extl.set} which is referencing the entry from the other file. These two files can be
loaded without conflict using:

\usepackage [record, symbols]{glossaries-extra}

\GlsXtrLoadResources [src={entries-terms},

176

5.7 Field and Label Options

label-prefix={gls.},
ext-prefixes={sym.}

]

\GlsXtrLoadResources[src={entries-symbols},
type={symbols},
label-prefix={sym.},
ext-prefixes={gls.}

]

Now the set entry from entries-terms.bib will be defined with the label gls.set and
the description will be:

collection of values, denoted \gls{sym.set}

The set entry from entries-symbols.bib will be defined with the label sym.set and the
description will be:

a \gls{gls.set}

Note that in this case the .bib files have to be loaded as two separate resources. They
can’t be combined into a single src list as the labels aren’t unique.

If you want to allow the flexibility to choose between loading them together or separately,
you’ll have to give them unique labels. For example, entries-terms.bib could contain:

Q@entry{set,

name={set},

description={collection of values, denoted \gls{extl.S}}
}

and entries-symbols.bib could contain:

@symbol{S,
name={\ensuremath{\mathcal{S}}},
description={a \gls{extl.setl}}

}

Now they can be combined with:
\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

which will simply strip the ext1. prefix from the cross-references. Alternatively:

\GlsXtrLoadResources[src={entries-terms,entries-symbols},
label-prefix={gls.},
ext-prefixes={gls.}

]

which will insert the supplied 1abel-prefix at the start of the labels in the entry definitions
and will replace the ext1. prefix with gls. in the cross-references.

177

5.7 Field and Label Options

prefix-only-existing=(boolean)

This is a boolean option. It’s possible that a prefix can end up being inserted when there’s
no entry in the current resource set that matches the prefixed label. If this option is set then
the prefix won’t be added if there’s no matching entry. The default setting is prefix-only
-existing={false}.

dependency-fields={list)

The (list) should be a comma-separated list of fields that have values in the form [(tag)] (id-
list) where (id-list) is a comma-separated list of entry labels. The value is required for this
key but may be empty, which indicates an empty set of fields (that is, the setting is switched
off). Note that the listed fields must be recognised as known fields, for example, custom fields
defined with \glsaddstoragekey.

This setting makes those fields act like the see field by identifying the listed entries as
dependencies, but the information isn’t added to the cross-reference part of the location list.
This action is performed after 1abelify-1ist, if that’s also set.

For example, suppose the file entries-en.bib contains:

@index{cat,
translations-pt={gato,gatinho},
seealso={kitten}

}

O@index{kitten,
translations-pt={gato,gatinho}

}

@index{staple}
@index{rivet}
@index{mat}
@index{carpet}
@index{rug}
@index{tapestry}
@index{doormat}
@index{matting}
@index{coconut-matting,
name={coconut matting}
}
@index{track}
@index{furrow}

and suppose the file entries-pt.bib contains:

@index{gato,
prefix={o},

178

5.7 Field and Label Options

translations-en={cat,staple,rivet},
seealso={gatinho}

}

@index{gatinho,
translations—en={kitten}

}

@index{tapete,
translations-en={carpet,rug,mat,tapestry}

3

@index{esteira,
prefix={a},
translations-en={mat,track,matting,furrow}

3

@index{capacho,
prefix={o},
translations-en={doormat,matting,mat,coconut-matting}

3

The aim here is to have a document containing an English-to-Portuguese and a Portuguese-
to-English dictionary. The custom translations-pt and translations-pt fields contain
comma-separated lists of possible translations. In this case I don’t want to use the see field
(and, in fact, can’t for the entries that have the seealso field set), but I can identify the
values of those fields as dependent entries to ensure that they are selected even if they’re not
referenced in the document.

For convenience I've aliased the custom fields to user1:

\documentclass{article}

\usepackage [T1]{fontenc}
\usepackage [utf8]{inputenc}
\usepackage [british,brazilian] {babel}
\usepackage [colorlinks] {hyperref}
\usepackage [record,

nomain,

nostyles,

stylemods={bookindex},
style={bookindex}
l{glossaries-extra}
\usepackage{glossaries-prefix}

\newglossary*{en}{English Terms}

179

5.7 Field and Label Options

\newglossary*{pt}{Portuguese Terms}

\GlsXtrLoadResources[
type={en},
src={entries-en},
sort={en-GB},
category={en},
field-aliases={translations-pt=useri},
dependency-fields={useril},
sort-label-list={userl:pt-BR:glsentryname}
]
\GlsXtrLoadResources[
type={pt},
src={entries-pt},
sort={pt-BR},
category={pt},
field-aliases={translations—-en=userl},
dependency-fields={useril},
sort-label-list={userl:en-GB:glsentryname}

\apptoglossarypreamble [en] {\selectlanguage{british}}
\apptoglossarypreamble [pt]{\selectlanguage{brazilian}}

\begin{document}
\selectlanguage{british}
The \gls{cat} sat on the \gls{mat}.

\selectlanguage{brazilian}
0 \gls{gato} sentou-se no \gls{tapetel}.

\renewcommand*{\glsxtrbookindexname}[1]{%
\glsxtrifhasfield{prefix}{#1}{\xmakefirstuc\glscurrentfieldvalue\ }{}/
\glossentryname{#1}/

\glsxtrifhasfield{useri}{#1}
{; tramnslations: \glsxtrseelist\glscurrentfieldvalue}{}/

}

\printunsrtglossaries

\end{document}

180

5.7 Field and Label Options

Special Fields
save-original-id=(value)

The (value) may be the keywords false or true or the name of a field in which to store the
entry’s original label (as given in the .bib file). The default setting is save-original-id=
{false}. If (value) is omitted or is the keyword true, then originalid is assumed.

If (value) has an associated key in \newglossaryentry (for example, one provided with
\glsaddstoragekey) it will be set after the field aliases, otherwise (for example, original-
id) it will simply be added to the .glstex file using \G1sXtrSetField after the entry def-
inition (which means the field can’t be referenced in other resource options). This setting is
governed by save-original-id-action.

save-original-id-action={value)

This option determines whether or not save-original-id should save the original entry
label. No action is performed when save-original-id={false} otherwise the action is
determined by (value) which may be one of the following keywords:

+ always: always save the original label (default);
« no override: don’t override a field that’s already been set;

+ changed override or changed or diff: only save the original label if it’s different
from the final label;

« changed no override: only save the original label if it’s different from the final label
and the specified field hasn’t been set.

The “no override” options make no difference if the given field has no associated key in \new-
glossaryentry (such as originalid). For known fields, bear in mind that the field will be
set after field aliasing but before other options, such as ignore-fields.

save-definition-index=(boolean)

This is a boolean option. If the value is omitted true is assumed. The default setting is
save-definition-index={false}.

This setting will save the definition index that’s used by identical-sort-action={def}
to determine the order of definition in the special internal field definitionindex. This field
is assigned when the entry is first created and can be referenced with \bibglsdefinition-
index. You can reference this field with certain resource options, such as format-integer
-fields, but you must place the save-definition-index resource option first.

Note that (unless you need to maintain hierarchy) if you want to order all entries by defi-
nition, it’s better to use sort={none}, which doesn’t perform any sorting, so the order will
be by definition.

181

5.7 Field and Label Options

save-use-index=(boolean)

This is a boolean option. If the value is omitted true is assumed. The default setting is
save-use-index={false}.

This setting will save the order of use index that’s used by identical-sort-action=
{use} in the special internal field useindex. This field is assigned when the entry picks up
its first record and can be referenced with \bibglsuseindex. You can’t reference this field
in resource options such as format-integer-fields.

Entries that don’t have records won’t have this field set. The order of use corresponds to
the first time the entry is recorded in the document.

Note that (unless you need to maintain hierarchy) if you want to order all entries by use,
it’s better to use sort={use}, which doesn’t perform any sorting.

save-from-see=(value)

This option allows you to save a comma-separated list of entry labels in a designated internal
field of the target entry identified by their see field. If the (value) is omitted, save-from
-see={from-see} is assumed. The value may be the keyword false, which switches off
this setting, otherwise the value should be the desired name of the internal field. The default
setting is save-from-see={false}.

For example, if the . bib file contains:

@index{gourd}
@index{cucumber,see={gourd}}
@index{pumpkin, see={gourd}}

then the resource option save-from-see={from-see} will create an internal field called
from-see for the gourd entry that contains the comma-separated list cucumber , pumpkin.

Note that the given internal field isn’t actually assigned within bib2gls, so it can’t be
accessed via any resource options. Each item in this list is added using \glsxtrapptocsv-
field after the source entry (that is, the entry containing the see field) is defined in the
.glstex file. This means that the list will be in the same order as the entries. You can then
pass the field value to \glsseelist. For example:

\glsdefpostdesc{/
\glsxtrifhasfield{from-see}{\glscurrententrylabel}
{, related: \glsseelist{\glscurrentfieldvalue}}{}%

}

This option has no effect with the “no dependency” selection criteria (such as selection
={recorded no deps}).

save-from-seealso=(value)

As save-from-see but for the seealso field. If the value is omitted, save-from-seealso
={from-seealso} is assumed.

182

5.7 Field and Label Options

save-from-alias=(value)

As save-from-see but for the alias field. If the value is omitted, save-from-alias=
{from-alias} is assumed.

save-crossref-tail=(value)

If you have a cross-reference trail where one entry references another entry using see,
seealso or alias and the referenced entry also references another, and so on, then you
can save the tail end of the trail with this option. Note that the trail only follows single-label
lists (in see or seealso). The trail is terminated if an entry doesn’t have one of those three
fields set or if it cross-references multiple entries or if the trail loops back on itself.

If you have a loop, the tail for some entries may end prematurely since the algorithm to
obtain the tail saves the tail for each sub-trail to avoid recalculating it. It’s best to avoid this
setting if you have cross-reference loops. (Aside from two-way cross-references, it’s best to
avoid loops in general.)

The tail label is stored in the field identified by the (value) of this option. If the value
is omitted, save-crossref-tail={crossref-tail} is assumed. The field won’t be set if
there’s no tail. The tails are calculated when writing the entry definitions to the . glstex file
so the value can’t be referenced or otherwise accessed by bib2gls.

Example:

@index{samplel,see={sample2}}
@index{sample2,see={sample3}}
O@index{sample3,see={sampled}}
@index{sample4}

The tail for samplel is sample4. As a by-product of the recursion used in calculating the tail

for samplel, the tail for each element in the trail (sample2 and sample3) is also calculated.

The tail is the same for each entry in the trail. The final entry sample4 doesn’t have a tail.
If sample4 is modified to cross-reference samplel:

O@index{sample4,see={samplel}}

then when the tail for sample4 is calculated the tail for its cross-reference (samplel) is
consulted. This has already been set to sample4. An entry can’t have itself as a tail so
the tail for sample4 is set to sample3. All the other entries still have sample4 as their tail
because their tail was determined while traversing the trail for samplel, which had to stop
when it wrapped round to its starting point.

save-original-entrytype={value)

The (value) may be the keywords false or true or the name of a field in which to store
the original entry type (as given in the .bib file but without the leading @ and converted
to lower case). The setting is save-original-entrytype={false}. If (value) is omitted
or the keyword true, then save-original-entrytype={originalentrytypel} If (value)

183

5.7 Field and Label Options

has an associated key in \newglossaryentry (for example, one provided with \glsadd-
storagekey) it will be set after the field aliases, otherwise (for example, originalentry-
type) it will simply be added to the .glstex file using \GlsXtrSetField after the entry
definition (which means the field can’t be referenced in other resource options). This setting
is governed by save-original-entrytype-action.

save-original-entrytype-action={value)

This option determines whether or not save-original-entrytype should save the original
entry type. No action is performed when save-original-entrytype={false} otherwise
the action is determined by (value) which may be one of the following keywords:

« always: always save the original entry type (default);
« no override: don’t override a field that’s already been set;

+ changed override or changed or diff: only save the original entry type if it’s dif-
ferent from the final entry type;

+ changed no override: only save the original entry type if it’s different from the final
entry type and the specified field hasn’t been set.

The “no override” options make no difference if the given field is unknown (such as original-
entrytype). For known fields, bear in mind that the field will be set after field aliasing but
before other options, such as ignore-fields.

The “changed” options ignore case. For example, if the .bib file defined an entry with
OINDEX then both the original and final entry type will be index.

gather-parsed-dependencies={value)

Dependencies that are found by parsing field values may be gathered into a comma-separated
list saved in a field for later use. The (value) is the name of the desired field. If the (value) is
omitted gather-parsed-dependencies={seealso} is assumed. If the designated field is
already set, the list will be appended to the existing value.

Note that other dependencies, such as those obtained by examining the cross-reference
fields (see, seealso or alias) or ancestors or dual entries, are not automatically added. The
(value) may be the keyword false to switch off this option (which is the default).

Assignments
group=(label)

The group option will set the group field to (label) unless (label) is auto. If group={auto}
then if the ——group switch is used the value of the group field is set automatically during
the sorting (see also group-formation, group-level and section 1.3). If the —~—no-group
setting is on then group={auto} does nothing.

184

5.7 Field and Label Options

The corresponding group title can be set with \glsxtrsetgrouptitle in the document
if the title is different from the label. The default behaviour is group={auto}.
For example:

\GlsXtrLoadResources[sort={integer},group={Constants},
src={entries-constants}), data in entries-constants.bib

]
\GlsXtrLoadResources[sort={letter-case},group={Variables},
src={entries-variables}’, data in entries-variables.bib

]

In this case, if the type field hasn’t been set in the . bib files, these entries will be added to the
same glossary, but will be grouped according to each instance of \GlsXtrLoadResources,
with the provided group label.

category=(value)

The selected entries may all have their category field changed before writing their defini-
tions to the .glstex file. The (value) may be:

« false: switch off this setting (default);

- same as entry: set the category to the .bib entry type used to define it (lower case
and without the initial @) after any aliasing, if applicable;

« same as original entry: (new to v1.4) set the category to the original entry type
(lower case and without the initial @) before it was aliased (behaves like same as
entry if the entry type wasn’t aliased);

- same as base: (new tovl.1) set the category to the base name of the .bib file (with-
out the extension) that provided the entry definition;

« same as type: set the category to the same value as the type field (if that field has
been provided either in the .bib file or through the type option);

(label): the category is set to (label) (which mustn’t contain any special characters).

This will override any category fields supplied in the .bib file.

When used with entry-type-aliases, the option category={same as entry} refers
to the target entry type whereas category={same as original entry} refers to the orig-
inal entry type given in the . bib file. In both cases, the value is converted to lower case to en-
sure consistency. An alternative is to use save-original-entrytype={category}. When
combined with save-original-entrytype-action={changed} it’s then possible to only
set the category to the original entry type for aliased entries and leave it unmodified for
unaliased entries.

For example, if the .bib file contains:

185

5.7 Field and Label Options

Q@entry{bird,
name={bird},
description = {feathered animal}

}
Oindex{duck}
@index{goose,plural="geese"}

@dualentry{dog,
name={dog},
description={chien}

+
then if the document contains:
\GlsXtrLoadResources[category={same as entry},src={entries}]

this will set the category of the bird term to entry (since it was defined with Gentry),
the category of the duck and goose terms to index (since they were defined with @index),
and the category of the dog term to dualentry (since it was defined with @dualentry).
Note that the dual entry dual.dog doesn’t have the category set, since that’s governed by
dual-category instead.

If, instead, the document contains:

\GlsXtrLoadResources[category={animals},src={entries}]

then the category of all the primary selected entries will be set to animals. Again the dual
entry dual.dog doesn’t have the category set.

Note that the categories may be overridden by the commands that are used to actually
define the entries (such as \bibglsnewindex).

For example, if the document contains:

\newcommand{\bibglsnewdualentry}[4] {7
\longnewglossaryentry*{#1}{name={#3},#2,category={dual}}{#4}/
}

\GlsXtrLoadResources[category={animals},src={entries}]

then both the dog and dual.dog entries will have their category field set to dual since the
new definition of \bibglsnewdualentry has overridden the category={animals} option.

type=(value)
The (value) may be one of:

» false: switches off this setting (default);

186

5.7 Field and Label Options

« same as entry: setthe type field to the entry type (lower case and without the initial
0);

« same as original entry: set the type to the original entry type (lower case and
without the initial @) before it was aliased (behaves like same as entry if the entry
type wasn’t aliased);

same as base: set the type field to the base name of the corresponding .bib file
(without the extension);

« same as category: set the type field to the same value as the category field (type
unchanged if category not set);

« same as parent: sets the type to the same as the entry’s parent (new to v1.9). If
the entry doesn’t have a parent or if the parent doesn’t have the type field set, then
no change is made. Entries should always have the same type as their parent, but it’s
possible for spawned entries to pick up the type field from their progenitor entry (if
it was explicitly set in the .bib file), which may be inappropriate.

« (label): sets the type field to the glossary identified by (label).

When used with entry-type-aliases, the option type={same as entry} refers to the
target entry type and type={same as original entry} refers to the original entry type
given in the .bib file. An alternative is to use save-original-entrytype={type}. When
combined with save-original-entrytype-action={changed} it’s then possible to only
set the type to the original entry type for aliased entries and leave it unmodified for unaliased
entries.

It’s not possible to have both category={same as type} and type={same as
category}.

Note that this setting only changes the type field for primary entries. Use dual-type for
dual entries.
For example:

\usepackage [record, symbols]{glossaries-extra}t

\GlsXtrLoadResources[src={entries-symbols}, type={symbols}]

Make sure that the glossary type has already been defined (see section 1.4). In the above,
the symbols option defines the symbols glossary. If you want to use a custom glossary, you
need to provide it. For example:

\usepackage [record,nomain] {glossaries-extra}
\newglossary*{dictionary}{Dictionary}

\GlsXtrLoadResources[src={entries-symbols},type={dictionary}]

187

5.7 Field and Label Options

(The nomain option was added to suppress the creation of the default main glossary.)

ignored-type=(type)

Any entry that only has ignored records will still be identified as having a record for selection
purposes, which is necessary for the entry to be defined in the document, but it may be
preferable to move such entries to a special ignored glossary. This can be done with ignored
~type={(type)}, where (type) is the label of the ignored glossary.

The glossary will be provided with \provideignoredglossary to ensure that it’s defined
even if ——no-provide-glossaries is set (see section 1.4). Note that it uses the unstarred
\provideignoredglossary since it’s assumed that it won’t be needed in a list and therefore
won’t have a target. This is different to all the other settings that provide an ignored glossary,
which use the starred version instead.

This option is not implemented for entries that have no records (those entries may have
been selected because they are dependent on another entry, such as a parent of a recorded
child entry). The entry must have at least one ignored record and no other type of record
and not be dependent on other entries or be cross-referenced by other entries.

Note that the trigger—type option, if set, overrides the ignored-type option for en-
tries that have records with the special format \glstriggerrecordformat (which is also
considered an ignored record). However, ignored-type will override the type, dual-type,
tertiary-type and the type specification in secondary.

Ignored entries may be copied to another glossary with copy-to-glossary. If this is
undesirable, a condition may be applied to prevent it. For example, to copy all selected
entries to the glossary labelled “index” except for ignored entries:

\GlsXtrLoadResources|[

src={{terms,abbreviations}}
ignored-type={ignored},
copy-to-glossary={"index" [type <> "ignored" 1}
]

trigger-type=(type)

The record counting commands, such as \rgls, use the special format \glstriggerrecord-
format, which bib2gls also treats as an ignored record. This means the entry will still be
identified as having a record for selection purposes, which is necessary for the entry to be
defined for use in the document, but in order to prevent it from appearing in the glossary
you need to transfer the entry with trigger—type={(type)}. This will override the type,
dual-type, tertiary-type and the type specification in secondary.

The provided value (type) must be a glossary label (not one of the keywords allowed by
type) or false to switch off this setting. You can define the glossary before loading the
resource, but it’s not required as bib2gls will write \provideignoredglossary*{(type)}
to the .glstex file even if —~—no-provide-glossaries is set (see section 1.4).

188

5.7 Field and Label Options

progenitor-type=(type)

This sets the default type field for the main term defined by @progenitor-like entries. The
(value) is as for type. This doesn’t change the type for the spawned progeny.

progeny-type=(type)

This sets the default type field for the progeny term spawned by @progenitor-like entries.
The (value) is as for type. This doesn’t change the type for the main progenitor. Remem-
ber that with the default adopted-parent-field={parent} setting, the given type should
match the type of the parent entry.

adopted-parent-field={type)

This identifies the target field to be set to the corresponding value of the adoptparents list
by the progeny entries spawned by the @progenitor type of entry. The default is parent.

ignore-fields=(list)

Take care not to confuse ignore-fields with omit-fields. The argument of
ignore-fields is a simple list of field names.

The ignore-fields key indicates that you want bib2gls to skip the fields listed in the
supplied comma-separated (list) of field labels. Remember that unrecognised fields will al-
ways be skipped. However, an unrecognised field can still be referenced with some options
(such as replicate-fields) whereas any field excluded with ignore-fields will be dis-
carded and can’t be referenced.

This setting is always implemented after field-aliases (see section 1.5). If a field has
been aliased then the original field name is no longer present and so ignoring it will have no
effect.

For example, suppose my .bib file contains:

@abbreviation{html,
short ="html",
long = {hypertext markup language},
description={a markup language for creating web pages},
seealso={xml}

3

but I want to use the short-long style and I don’t want the cross-referenced term, then I can
use ignore-fields={seealso,description}.

Note that ignore-fields={parent} removes the parent before determining the depen-
dency lists. This meansthat selection={recorded and deps}andselection={recorded
and ancestors} won’t pick up the label in the parent field.

189

5.7 Field and Label Options

If you want to maintain the dependency and ancestor relationship but omit the parent
field when writing the entries to the . glstex file, you need to use f1latten instead. Alter-
natively, you can use omit-fields, however the hierarchical structure will continue to be
maintained.

The ignore-fields instruction removes the unwanted fields early in the Stage 3 process
(see section 1.5). This means that those field values won’t be available if they are referenced
nor can they be used to establish dependencies. If fields should be omitted from the . glstex
file but the field values should still be available to bib2gls, then use omit-fields instead.

omit-fields=(list)

Take care not to confuse omit-fields with ignore-fields. The argument of omit
-fields is a complex list of string concatenations.

The omit-fields action takes place in the final stage, at the point where each entry is
written to the . glstex file. Unlike ignore-fields, the fields aren’t removed from bib2gls’s
own internal data structure. This means that the fields can be referenced in other options
and will be parsed as usual for dependencies.

If set, the (list) argument is a list of string concatenations with optional conditionals.
Take care that constant strings are correctly delimited to ensure that they are not mistaken
for references to field values. Note that this is different from ignore-fields, which simply
requires a list of field names. For example, to omit the description field for all entries:

omit-fields={"description"}

Each identified field is simply omitted when writing the field list in the . glstex file. How-
ever, this may trigger a fallback if the field is required. This option only applies to fields that
have a corresponding key that may be used in commands such as \newglossaryentry. The
option does not apply to special internal fields. Any fields identified in the given list that are
not recognised will be ignored.

When each entry definition is being written to the .glstex file, the supplied (list) is
evaluated for the current entry. Each non-empty non-null result will be added to a temporary
set of exclusion field names. Then each (key)=(value) for the current entry will be written
to the . glstex for each known (key) that has the corresponding field set where the (key) is
not included in the exclusion set.

Suppose the file abbrv.bib contains:

O@abbreviation{ssi,
short={SSI},
long={server-side includes},
description={a simple interpreted server-side
scripting language}
}
@abbreviation{html,
short={HTML},

190

5.7 Field and Label Options

long={hypertext markup languagel,
description={a markup language for creating web
pages}
}
O@abbreviation{shtml,
short={SHTML},
long={server-side includes enabled hypertext markup language},
description={a combination of \gls{html} and
\gls{ssil}}
}

With ignore-fields={description}, the description field will be removed when the
entry is first processed. This means that the dependencies in the SHTML description field
won’t be detected. Whereas with omit-fields={"description"}, the description field
won’t be removed, so it will still be parsed and the dependent entries will be detected, how-
ever the description field won’t be written in the . glstex file. In this case, you may want
to also use gather-parsed-dependencies to save a list of the dependent entries.

Remember that literal strings must be quoted with string concatenations. For example,
suppose an entry has been defined as:

@index{nom-fr,
name={nom},
description={name}

}
In the case of omit-fields={"description"} then this will become:

\newglossaryentry{name-fr}{
name={nom}

b

Whereas omit-fields={description} returns the value of the description field. For
the above example entry, the value of the description field is “name”, so name is added to
the exclusion set and so won’t be written whilst bib2gls iterates over the “name-fr” list of
fields.

This means that the name field will be flagged as not written to the .glstex file. In the
case of @index, this means that the fallback for the name field will be used, which is the entry
label. The result will therefore end up as:

\newglossaryentry{name-fr}{
description={name},
name={name-fr}

b

In this case, the description field value just happens to be the name of another recognised
field. Mostly, this type of error would likely result in a string that doesn’t match any known
field, which will trigger a warning.

191

5.7 Field and Label Options

Conditions may also be applied. For example, to omit the description field for any
entries defined with @abbreviation:

omit-fields={
"description" [entrytype -> actual = "abbreviation"]

+

omit-fields-missing-field-action={(value)}

This option indicates what to do if a source field identified in omit-fields is missing. The
value may be one of:

« skip: return null;

« fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise return null (default);

« empty: treat the missing value as empty.

Returning null or empty skips the string concatenation element from the omision list.

field-aliases=(key=value list)

You can instruct bib2gls to treat one field as though it was another using this option. The
value should be a comma-separated list of (field1)=(field2) pairs, where (field1) and (field2)
are field names. Identical mappings and trails aren’t permitted. (That is, (field1) and (field2)
can’t be the same nor can you have both (field1)=(field2) and (field2)=(field3).) If you want
to swap fields you need to use one of the dual entry types instead. Field aliases are performed
before ignore-fields, so if (fieldl) is listed in ignore-fields it won’t be ignored (unless
(field2) is in ignore-fields).
For example, suppose people.bib contains:

@entry{alexander,
name={Alexander III of Macedon},
description={Ancient Greek king of Macedon},
born={20 July 356 BC},
died={10 June 323 BC},
othername={Alexander the Great}

}

This contains three non-standard fields: born, died and othername. I could define these
fields using \glsaddkey, but another possibility is to map these onto the user keys useri,
user2 and user3, which saves the overhead of providing new keys:

\GlsXtrLoadResources[
src={people},’% data in people.bib
field-aliases={born=userl,died=user2, othername=user3}

]

192

5.7 Field and Label Options

replicate-fields=(key=value list)

Note the difference in syntax between replicate-fields and assign-fields. Both
have a key=value list as the option argument, but the (key)=(value) syntax is different.
In the case of replicate-fields, the left hand side ({key)) is the source field. The
right hand side ({value)) is a comma-separated list of destination fields. The value of
the source field will be copied into each of the destination fields. In the case of assign
~fields, the left hand side ({(key)) is the destination field and the right hand side value
is an assignment expression with an optional conditional.

The value of one field can be copied to other fields using this option where each (key)=
(value) pair is in the form (field1)={(field2) , (field3) ,..} where all values are field names. The
value is required for this key but may be empty, which indicates that the setting is switched
off.

This option copies the contents of (fieldl) to (field2), (field3), ... (but only if the target
field isn’t already set with replicate-override={false}). This action is performed after
ignore-fields (see section 1.5). If the source field is missing, the replicate-missing
-field-action setting determines the action.

If the target field doesn’t have an associated key recognised by \newglossaryentry then
the value will be saved using \GlsXtrSetField. Special internal fields aren’t permitted as
either source or target fields.

For example, suppose people.bib contains:

@entry{alexander,
name={Alexander III of Macedon (Alexander the Great)},
text={Alexander},
description={Ancient Greek king of Macedon}

by

Since the first field hasn’t been supplied, it will default to the value of the text field, but
perhaps for one of my documents I'd like the first field to be the same as the name field.
Rather than editing the .bib file, I can just do:

\GlsXtrLoadResources[
src={people},’% data in people.bib
replicate-fields={name=first}

]

This copies the contents of the name field into the first field. If you have more than one
field in the list take care to brace the lists to avoid confusion. For example, if for some reason
I want to copy the value of the name field to both first and firstplural and copy the
value of the text field to the plural field, then this requires braces for the inner list:

\GlsXtrLoadResources[
src={people},’% data in people.bib
replicate-fields={name={first,firstplurall},text=plural}
]

193

5.7 Field and Label Options

If my people.bib file instead contained:

@entry{alexander,
name={Alexander III of Macedon (Alexander the Great)},
first={Alexander the Great},
text={Alexander},
description={Ancient Greek king of Macedon}

}
then:

\GlsXtrLoadResources[
src={people},’% data in people.bib
replicate-fields={name=first}

]

won’t alter the first field since replicate-fields doesn’t override existing values by
default. You can use replicate-override to change this. Alternatively, since replicate
-fields is always performed after ignore-fields it’s possible to ignore the first field
which means that the name value can then be copied into it:

\GlsXtrLoadResources[
src={peoplel},’% data in people.bib
ignore-fields={first},
replicate-fields={name=first}

]

Note that the ordering within the resource options doesn’t make a difference. The same result
occurs with:

\GlsXtrLoadResources[
src={people},’% data in people.bib
replicate-fields={name=first},
ignore-fields={first}

]

replicate-override={(boolean)}

This is a boolean option. The default setting is replicate-override={false}. If true,
replicate-fields will override the existing value if the target field is already set.

replicate-missing-field-action={(value)}

This option indicates what to do if a source field identified in replicate-fields is missing.
The value may be one of:

« skip: skip the replication of the missing field (default);

194

5.7 Field and Label Options

« fallback: use the fallback for the missing field (see section 5.8), if one is available
(otherwise skip);

« empty: make the target field empty.

assign-fields=(key=value list)

Note the difference in syntax between replicate-fields and assign-fields, as
highlighted in the replicate-fields section, above. The assign-fields option is
implemented after the replicate-fields option (see section 1.5).

The assign-fields option is a more complicated way of setting a field than replicate
~-fields. Each (key)=(value) element of the key=value list argument has the syntax:

(dest-field) =[(override)] (element-list) [(condition)]

If the destination field ((dest-field)) is already set, it will only be overwritten if assign
—override={true} or if [override] is “o”. The (dest-field) is simply the name of the field
for the entry under consideration and doesn’t use the more complex (field-ref) syntax used
in (element-list), which is described in section 5.1. You can, however, use the \u quark on
either side of the (key)=(value) element to indicate a Unicode character.

The [(override)] following the equal sign is optional and may be used to counteract the
assign-override setting for the given assignment. The (override) value may be either “o0”
(override) or “n” (no override). If not present, the assign-override setting will be used.

The (element-list) is a string concatenation, as described in section 5.1. If any individual
element in the list evaluates to null, the entire string is deemed to be null, in which case the
assignment won’t be made.

The [(condition)] part is optional. If present, the assignment is only made if the condition
evaluates to true. The condition should be placed in square brackets after the (element-list)
part. This is a complex conditional, as described in section 5.2.

Note that, unlike most (key)=(value) options, the value part ({element-list) [{condition)])
should not be grouped. The assign-fields option is parsed in a different way to the other
key=value list options. However, it’s best to group the entire (value) argument of assign
-fields. For example:

assign-fields={
name = text + ", " + symbol

}

Don’t do name = {text + ", " + symbol}.

7

Remember that field values may be altered before or after assign-fields by other
resource options (see section 1.5). The assignment will use the value current at the time
it is referenced during the processing of assign-fields. If you need to reference the
destination field in the assignment, make sure that the override setting is on if the field
needs to be updated.

195

5.7 Field and Label Options

For example, suppose I have defined the custom fields surname and forename, and I have
the following in my .bib file:

@index{Smith}
@index{Jane-Smith,
forename={Jane},

parent={Smith}
}

Suppose that what I actually want is:

@index{Smith}
@index{Jane-Smith,
forename={Jane},
surname={Smith},
parent={Smith},
name={Jane},
text={Jane Smith}
+

This is quite repetitive to type out for every person you need to index. The replicate
-fields option can reduce some of this. For example:

replicate-fields={
forename={name},
surname={parent}

}

This doesn’t deal with the text field and also has a problem if the parent field (which should
contain a label) doesn’t match the surname. For example, I might also have:

O@index{de-la-Fontaine,

name={de la Fontaine}

}
@index{Margaret-de-la-Fontaine,
forename={Margaret},
parent={de-la-Fontaine}

3

In this case the custom surname field needs to match the parent’s name field, not the parent’s
label.
The desired result can instead be obtained with:

assign-fields={
surname = parent —> name,
name = self -> forename,
text = self -> forename
+ " " + gelf -> surname

196

5.7 Field and Label Options

The self -> part is optional so this can be written more compactly as:

assign-fields={
surname = parent -> name,
name = forename,
text = forename + " " + surname

}

The last assignment in the above can also be written as:
text = forename + { } + surname

Suppose, for some reason, I want the first use to show the surname in bold. This means I
need to add \textbf{ before the value of the surname field and the closing } needs to go
after. This can be achieved with:

first = forename + " \textbf{" + surname "}"

Note that because there are unbalanced braces in the string fragments, it’s necessary to use

quote delimiters. Since \textbf is robust, there’s no need to protect it from expansion.
Suppose, instead, I want the surname in upper case on first use. I could simply replace

\textbf with \MakeUppercase, but I can get bib2gls to do the case-conversion instead:

first = forename + " " + \UC{ surname }

This assumes that \GlsXtrResourceInitEscSequences has been added to the definition
of \glsxtrresourceinit, as described in section 1.6. Otherwise you would need to protect
\UC.

In the above example, the surname field is obtained from the value of the parent’s name
according to the assignment:

surname = parent -> name,

In the case of the Smith entry, the name field hasn’t been set.

If a referenced field hasn’t been set then the behaviour depends on the assign-missing
-field-action setting. The default behaviour is to use the fallback, if provided (see sec-
tion 5.8). In the case of @index, the fallback for the name field is the entry’s label. This means
that the Jane-Smith entry will have the surname field set to “Smith”.

If the fallback isn’t set or if there is no fallback then the assignment instruction will be
skipped. Similarly, if an ancestor is referenced but doesn’t exist then assignment will again
be skipped.

The ancestor entries must be defined first to ensure that they have been processed and
have had their fields set before they can be referenced in an assignment.

Since I haven’t imposed any conditions on the assignments, the instructions will be at-
tempted on all entries. This includes the parent entries.

197

5.7 Field and Label Options

The first instruction attempts to set the surname field to the parent’s name. Neither the
Smith nor the de-la-Fontaine entries have a parent entry, so this instruction is skipped for
both of them.

The second instruction attempts to set the name field to the entry’s forename field. The
de-la-Fontaine entry already has the name field set so the instruction is automatically skipped
(because of the default assign-override={false}). The Smith entry doesn’t have the name
field set so the assignment will be attempted but will fail because the forename field isn’t set
and doesn’t have a fallback.

The text (and first) instruction similarly references the forename field, which isn’t set,
so the instruction is skipped. The instruction also contains a reference to the surname field,
but that part of the assignment isn’t reached as the attempt stops at the first unset reference.

This means that neither the Smith not the de-la-Fontaine entries will be affected by the
above assign-fields setting.

Each instruction will be attempted, in turn, unless the assign-override setting prevents
it. This means it’s possible to have multiple assignments for a particular field. The first
one that succeeds will be the one that has effect (with assign-override={false}). For
example:

assign-fields={
surname = parent —-> name,
surname = name,
name = forename,
text = forename + " " + surname

}

This has two instructions for the surname. The first one will be applied to entries that have
a parent and the second one will be applied to the other entries (that don’t already have the
surname set).

Suppose I also have some monarchs, who are more typically only referred to by their
forename (with no surname), possibly prefixed by their rank and suffixed by their ordinal.
Let’s further suppose that in my document I have also defined the custom fields rank and
ordinal, and in my .bib file I have:

@indexplural{king}
@indexplural{queen}
@indexplural{empress,plural={empresses}}

O@index{King-Stephen,
parent={king},
forename={Stephen}

}

@index{Empress-Matilda,
parent={empress},
forename={Matilda},

}

198

5.7 Field and Label Options

@index{Elizabeth-I,
parent={queen},
forename=Elizabeth,
ordinal=I

}

The earlier assignment rules won’t be appropriate for these cases, as they would result in the
text fields: “Stephen kings”, “Matilda empresses” and “Elizabeth queens”.

In this case, the assignment rules need to depend on the type of entry. I could test if the
parent label is “king” or “empress” or “queen”, but a more reliable approach is to have custom
entry types which can be aliased:

@index{Smith}
Operson{Jane-Smith,
forename={Jane},
parent={Smith}

}

@index{de-la-Fontaine,
name={de la Fontaine}

}
Operson{Margaret-de-la-Fontaine,
forename={Margaret},
parent={de-la-Fontaine}

by

@indexplural{king}
@indexplural{queen}
@indexplural{empress,plural={empresses}’}

@monarch{King-Stephen,
parent={king},
forename={Stephen}

}

Omonarch{Empress-Matilda,
parent={empress},
forename={Matilda},

}

@monarch{Elizabeth-1I,
parent={queen},
forename=Elizabeth,
ordinal=I

3

The resource options are now:

199

5.7 Field and Label Options

entry-type-aliases={person=index,monarch=index},
assign-fields={

name = forename + ~~~'' ordinal,

name = forename,

surname = parent —> name

[entrytype -> original = "person"],
ytyp g p
text = forename + " " + surname
[entrytype —-> original = "person"],
ytyp g p
first = \FIRSTUC { parent -> text } + " " + name
[entrytype —-> original = "monarch"],
ytyp g
text = name
[entrytype —> original = "monarch"]
ytyp g

Additional fields can be added to accommodate nicknames or other forms of address,
which will add to the complexity of the assignment specification.

assign-override={(boolean)}

This is a boolean option. The default setting is assign-override={false}. If true, assign
-fields will override the existing value if the target field is already set.

assign-missing-field-action={(value)}

This option indicates what to do if a source field identified in assign-fields is missing.
The value may be one of:

« skip: skip the assignment;

« fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise skip the assignment (default);

« empty: treat the missing value as empty.

Return null will result in the assignment instruction being omitted.

counter=(value)

The counter option assigns the default counter to use for the selected entries. (This can
be overridden with the counter key when using commands like \gls.) The value must be
the name of a counter. Since bib2gls doesn’t know which counters are defined within the
document, there’s no check to determine if the value is valid (except for ensuring that (value)
is non-empty). A value of false will switch off this setting (the default).

Note that this will require an extra ETEX and bib2gls call since the counter can’t be used
for the indexing until the entry has been defined.

200

5.7 Field and Label Options

copy-action-group-field={value)

This option may only be used when invoking bib2gls with the --group (or -g) switch. If
an action other than the default action={define} is set, this option can be used to identify
a field in which to save the letter group information where (value) is the name of the field.
This just uses \GlsXtrSetField. You will need to redefine \glsxtrgroupfield to (value)
before displaying the glossary. For example, if copy-action-group-field={dupgroup},
action={copy} and type={copies} are set in the resource options and copies identifies
a custom glossary:

\printunsrtglossary* [type={copies}, style={indexgroup}]
{\renewcommand{\glsxtrgroupfield}{dupgroup}}

This option is ignored when used with action={define}. This option is not used by
secondary which will always save the group information in the secondarygroup field.
When used with action={define or copy}, entries that are defined will have both group
and the field given by copy-action-group-field set.

Note that youmay do copy-action-group-field={group} which will override the group
field from the original definition. This may be useful if you don’t use grouping in the primary
glossary. That is, you use nogroupskip and a non-group style. For example:

\printunsrtglossary [nogroupskip, style={index}]
\printunsrtglossary[type={copies},style={indexgroup}]
copy-alias-to-see=(boolean)

If set, the value of the alias field is copied to the see field. The default setting is copy-alias
-to-see={false}.

Field Adjustments
post-description-dot=(value)

The postdot package option (or nopostdot={false}) can be used to append a full stop (.)
to the end of all the descriptions. This can be awkward if some of the descriptions end with
punctuation characters. This resource option can be used instead. The (value) may be one
of:

« none: don’t append a full stop (default);
+ all: append a full stop to all description fields in this resource set;
« check: selectively append a full stop (see below).

Note that if you have dual entries and you use this option to append a full stop, then it will
be copied over to the mapped field. This is different to the postdot option which doesn’t add
the dot to the field but incorporates it in the post-description hook. This means that a dot

201

5.7 Field and Label Options

inserted with post-description-dot will come before the post-description hook whereas
with postdot the punctuation comes after any category-specific hook.

The post-description-dot={check} setting determines whether to append the dot as
follows:

o If the post-description-dot-exclude condition evaluates to true, then a dot isn’t
appended.

o If the description field ends with \nopostdesc or \glsxtrnopostpunc, then a dot
isn’t appended.

o If the description field doesn’t end with a regular (ungrouped letter or other) char-
acter, then a dot is appended. (For example, if the description ends with a control
sequence or an end group token.)

o If the description field ends with a character that belongs to the Unicode category
“Punctuation, Close” or “Punctuation, Final quote” then the token preceding that char-
acter is checked.

o If the description field doesn’t end with a character that belongs to the Unicode
category “Punctuation, Other” then the dot is added.

Note that the interpreter isn’t used during the check. If the description ends with a com-
mand then a dot will be appended (unless it’s \glsxtrnopostpunc or \nopostdesc) even if
that command expands in such a way that it ends with a terminating punctuation character.
This option only applies to the description field.

post-description-dot-exclude=(value)

The value may either be empty, to indicate false (the default), or a complex condition using
syntax described in section 5.2. This option is only applicable with post-description-dot
={check}.

strip-trailing-nopost=(boolean)

This option is always performed before post-description-dot. The default setting is
strip-trailing-nopost={false}. If true any trailing ungrouped \nopostdesc or \gls-
xtrnopostpunc found in the description field will be removed. Note that the command
(possibly followed by ignored space) must be at the very end of the description for it to be
removed. A description should not contain both commands. This option only applies to the
description field.

For example, \nopostdesc will be stripped from:

description={sample\nopostdesc}

since it’s at the end. It will also be stripped from:

202

5.7 Field and Label Options

description={sample\nopostdesc }
since the trailing space is ignored as it follows a control word. It won'’t be stripped from:
description={sample\nopostdesc{} }

because the final space is now significant, but even without the space it still won’t be stripped
as the field ends with an empty group not with \nopostdesc. Similarly it won’t be stripped
from:

description={sample\nopostdesc\relax}

because again it’s not at the end.

check-end-punctuation=(list)

This options checks the end of all the fields given in (list) for end of sentence punctuation.
This is determined as follows, for each (field) in the comma-separated (list):

« if the last character is of type “Punctuation, Close” or “Punctuation, Final quote”, check
the character that comes before it;

« if the character is of type “Punctuation, Other”, then check if it’s listed in the entry
given by sentence.terminators in bib2gls’s language resource file.

If a sentence terminator is found, an internal field is created called (field)endpunc that
contains the punctuation character. Fields whose values must be labels (such as parent,
category and type) aren’t checked, even if they’re included in (list).

The default sentence.terminators is defined in bib2gls-en.xml as:

<entry key="sentence.terminators">.7!</entry>

Any character that isn’t of type “Punctuation, Other” won’t match.
For example, the sample books.bib file contains:

@entry{whydidnttheyaskevans,
name={Why Didn't They Ask Evans?},
description={novel by Agatha Christie},
identifier={book},
author={\sortmediacreator{Agatha}{Christie}},
year={1934}

}

With check-end-punctuation={name}, this entry will be assigned an internal field called
nameendpunc set to 7 as that’s included in sentence.terminators and is found at the end
of the name field:

\GlsXtrSetField{whydidnttheyaskevans}{nameendpunc}{7}

203

5.7 Field and Label Options

(Note that check-end-punctuation={first,text} won’t match as there’s no first or
text field supplied.)

If you have a field that ends with an abbreviation followed by a full stop, this will be
considered an end of sentence terminator, but the main purpose of this option is to provide
a way to deal with cases like:

Agatha Christie wrote \gls{whydidnttheyaskevans}.

where the end of sentence punctuation following \gls needs to be discarded. This is needed
regardless of whether or not the link text ends with an abbreviation or is a complete sentence.
It’s then possible to hook into the post-link hook “discard period” check. By default this
just checks the category attributes that govern whether or not to discard a following period,
but (with glossaries-extra v1.23+) it’s possible to provide an additional check by redefining:

\glsxtrifcustomdiscardperiod{(true)}{(false)}

This should expand to (true) if the check should be performed otherwise it should expand to
(false). You can reference the label using \glslabel. For example:

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\GlsXtrIfFieldUndef{nameendpunc}{\glslabel }{#2}{#1}/
}

This uses \GlsXtrIfFieldUndef rather than \glsxtrifhasfieldx* since there’s no need
to access the field’s value. (The unstarred form \glsxtrifhasfield can’t be used as it
introduces implicit scoping, which would interfere with the punctuation lookahead.) The
other difference between \G1sXtrIfFieldUndef and the other \..hasfield tests is the case
where the field is set to an empty value. In this case the field is defined (so \GlsXtrIfField-
Undef does the (false) argument) but it’s considered unset (so commands like \ifglshas-
field do the (false) argument).
sort-label-list={(list)
This option takes a list as the value with each element in the list in the form:
(field-list) : (sort) : (csname)
or:
(field-list) : (sort)
where:

« (field-list) is a comma-separated list of valid fields;

« (sort) is a valid sort method as per the sort option, but not including none or unsrt;

« (csname) is the name (without a leading backslash) of a command that takes a label as
its sole mandatory argument that’s recognised by bib2gls’ interpreter (such as those
listed in table 2.1).

204

5.7 Field and Label Options

The final : (csname) part may be omitted if no command need be applied. (That is, sort by
label.) The (list) value is required for this option but may be empty, which indicates the
setting is switched off.

The sorting options are as those for the main list. For example, for entries in the primary
list the break point is obtained from the break-at setting and for entries in the dual list the
break point is obtained from dual-break-at. (Remember that if dual-sort={combine}
then there is only one list that contains both the primary and dual entries, which is governed
by the primary options only.)

If the (field-list) has more than one element take care to use braces {} to avoid confusion
for the list-parser. For example:

\GlsXtrLoadResources[
sort-label-list={{see,seealso}:en:glsentryname}

]

Note that strange results may occur if this setting is used on any fields that don’t simply
contain a list of entry labels or if any of the referenced entries are processed in different
resource sets (see section 1.5).

After the main sorting of each set of selected entries is performed (as per sort or dual
-sort), if this option is set, then for each {(field-list)} : (sort) : (csname) the following steps
are performed:

1. For each entry (id):
a) For each (field) in (field-list), if the field is set for entry (id) then:

i. The field value must be in the form [(tag)] (label-list) where [(tag)] is op-
tional and (label-list) is a comma-separated list of entry labels (label;), ...,

(label,);

ii. A new list is constructed where the ith element is: {\(csname){(label;)}}
unless (csname) hasn’t been set, in which case the ith element is just {(label;)}
(the optional [(tag)] part is omitted);

iii. This new list is sorted according to the interpreter’s definition of the com-
mand given by (csname) (if provided) and the designated (sort) method;

iv. The field value is reconstructed with the labels in the corresponding order
(prefixed with [(tag)] if it was present in the original).

Note that there is no hierarchical structure in the sorting of the field list even if any of the
referenced entries has a parent.
For example, suppose the file entries.bib contains:

@index{bird}
@index{waterfowl, parent={bird} }

O@index{duck,

205

5.7 Field and Label Options

parent={waterfowl},
seealso={swan,duckling,parrot,goose}

}

Oindex{swan,
parent={waterfowl},
seealso={goose,duck}

}

@index{goose,
parent={waterfowl},
seealso={duck}

}
@index{parrot, parent={bird} }

@index{duckling,
see={[related terms]fluffy,velociraptor,duck,tardigrade}
}

@index{fluffy}
@index{tardigrade, name={water bear} }

@index{velociraptor}
And suppose the document contains:

\documentclass{article}
\usepackage [record,style={tree}]{glossaries-extra}

\GlsXtrLoadResources [

src={entries},

sort={en},
sort-label-list={{seealso,see}:en:glsentryname}

]

\begin{document}
\Gls{parrot}, \gls{tardigrade}, \gls{swan}, \gls{duck},
\gls{goose}, \gls{fluffy} \gls{duckling}, \gls{velociraptor}.

\printunsrtglossaries
\end{document}

206

5.7 Field and Label Options

Then this reorders the see and seealso fields according to the referenced entry’s name
(obtained with \glsentryname).
For example, the see field for the duckling entry was originally:

see={[related terms]fluffy,velociraptor,duck,tardigrade}
but in the . glstex file it’s written as:
see={[related terms]duck,fluffy,velociraptor,tardigrade}

The reason for tardigrade being placed after velociraptor is because \glsentryname
{tardigrade} is expanded to “water bear” (and “W” comes after “V”). If no encapsulating
command was specified:

sort-label-list={{seealso,see}:en}

then the list would have been sorted according to the labels instead (and so tardigrade
would come before velociraptor). Note that the optional tag is kept at the start of the list.
The seealso fields have also been changed. For example, the duck entry originally had:

seealso={swan,duckling,parrot,goose}
but in the . glstex file it’s written as:
seealso={duckling,goose,parrot,swan}

Note that the hierarchical structure hasn’t been maintained. The glossary lists “duckling” (a
top-level entry) after “swan” (a level 2 entry) but the seealso field has duckling first.

If you want to maintain the hierarchy you can use \glsxtrhiername instead of \gls-
entryname:

\GlsXtrLoadResources[
src={entries},
sort={en},
sort-label-list={{seealso,see}:en:glsxtrhiername}

]

The separator between the levels is given by \glsxtrhiernamesep which is defined by
glossaries-extra to produce “>”. The bib2gls interpreter’s definition of this command is
different to assist sorting and simply expands to a full stop to prevent it from being replaced
by the default word break marker.

In this case \glsxtrhiername{swan} would be displayed as “bird > waterfowl> swan” if
used in the document, but the interpreter converts it to “bird.waterfowl.swan”, so with the
default break-at setting the actual sort value becomes bird.waterfowl.swan| (instead of
bird|waterfowl |swan| which would be the result if the interpreter used the same defini-
tion as glossaries-extra).

Therefore the seealso field for the duck entry ends up as:

207

5.7 Field and Label Options

seealso={parrot,goose,swan,duckling}

Now swan comes before duckling because the actual sort value started with a “B” not “S”.
This hierarchical information isn’t shown in the cross-reference by default, so the duck
cross-reference list appears in the document as: parrot, goose, swan & duckling.
If you want the hierarchical information to appear to help assist the reader, you can rede-
fine \glsseeitemformat in the document to use \glsxtrhiername:

\renewcommand*{\glsseeitemformat}[1]1{\glsxtrhiername{#1}}

This means that the duck cross-reference now appears in the document as: bird > parrot,
bird > waterfowl > goose, bird > waterfowl >swan & duckling.

This next example document has two languages, English and Portuguese. The file entries-
en.bib contains the English terms, such as:

@index{cat, translations={gato,gatinho} }
@index{kitten, translations={gatinho} }
O@index{staple, translations={grampol}}
@index{rivet, translations={rebitel}}

The file entries-pt.bib contains the Portuguese terms, such as:

@index{gato, translations={cat,staple,rivet} }
O@index{gatinho, translations={kitten} }

Both files have a custom field called translations that will need to be either defined or
aliased. This field contains a comma-separated list of labels for the corresponding entries in
the other language file that provide a possible translation. Where a word has multiple possi-
ble translations, I'd like the list sorted alphabetically. (In practice, it would make more sense
to sort them according to how likely the translation is, but this is for illustrative purposes.)
For convenience, the custom field is simply aliased to the user1 field.

The document has two glossaries for each set of terms. The English terms are sorted ac-
cording to sort={en-GB} in one resource set and the Portuguese terms are sorted according
to sort={pt-BR} in another resource set. This means that there are cross-resource refer-
ences, but since there are no instances of @preamble it should be possible to resolve the
references.

The document code is:

\documentclass{article}

\usepackage [T1]{fontenc}

\usepackage [utf8]{inputenc}
\usepackage [british,brazilian] {babel}
\usepackage [record,

nomain,

nostyles,

stylemods={bookindex},

208

5.7 Field and Label Options

style={bookindex}
l{glossaries-extra}
\usepackage{glossaries-prefix}

\newglossary*{en}{English Terms}
\newglossary*{pt}{Portuguese Terms}

\GlsXtrLoadResources[
selection={all},
type={en},
src={entries-en},
sort={en-GB},
field-aliases={translations=useri},
sort-label-list={userl:pt-BR:glsentryname}
]
\GlsXtrLoadResources[
selection={all},
type={pt},
src={entries-pt},
sort={pt-BR},
field-aliases={translations=useril},
sort-label-list={userl:en-GB:glsentryname}

\apptoglossarypreamble [en] {\selectlanguage{british}}
\apptoglossarypreamble [pt]{\selectlanguage{brazilian}}

\begin{document}
\renewcommand*{\glsxtrbookindexname} [1]{%
\glossentryname{#1}/,
\glsxtrifhasfield{useriH{#1}{: \glsxtrseelist\glscurrentfieldvalue}{}/,
}
\printunsrtglossaries
\end{document}

In verbose mode, the transcript file indicates that it’s performing the label list sorting. For
example, when sorting according to sort-label-list={userl:pt-BR:glsentryname},
the transcript file contains:

Label list sort method 'pt-BR' on field: userl

The cat entry has a list of two elements in this field: gato,gatinho. This is converted into
a new list where the first element is:

{\glsentryname{gato}}

209

5.7 Field and Label Options

and the second element is:
{\glsentryname{gatinho}}

Regardless of the level of verbosity, the transcript file will contain the conversions obtained
by the interpreter:

texparserlib: {\glsentryname{gato}} -> gato
texparserlib: {\glsentryname{gatinho}} -> gatinho

The kitten entry has the same list, and the same process is repeated for that entry. The
--verbose mode will provide additional information. The --debug mode will indicate
whether the referenced label was found in the current resource set or if it had to be fetched
from another resource set. So if the resulting order isn’t what you expect, check the transcript
file for messages.

prune-xr=(boolean)

If true, this is a shortcut for:

prune-see-match={entrytype={index (plural)?},see={},seealso={},alias={}},
prune-seealso-match={entrytype={index(plural)?},see={},seealso={},alias=

{}},

This will remove any labels in an entry’s see or seealso field where the referenced label
doesn’t have any records and hasn’t been selected as another form of dependency and whose
entry type is either @index or @indexplural and doesn’t have the see, seealso or alias
fields set.

Both prune-see-match and prune-seealso-match can be switched off at the same time
with prune-xr={false}.

prune-see-match=(key=value list)

The value has the same syntax as match. Omitting the value switches off the setting. This
option is not cumulative.

If a value is supplied, this setting will attempt to prune unnecessary labels from see fields.
Note that pruning may fail if there are cross-reference trails.

Alabel will be stripped from a see field if the label references an entry that has no records,
isn’t dependent on another entry, hasn’t previously been selected, and matches the given
criteria. If more that one pattern match is supplied, prune-see-op determines whether to
apply a logical AND or a logical OR.

For example, suppose the file entries.bib contains the following:

@index{pumpkin}
@indexq{cucumber}
@index{melon}
@index{cucurbit,see={gourd}}

210

5.7 Field and Label Options

@index{gourd, see={pumpkin, cucumber ,melon}}
@index{courgette}
@index{marrow,seealso={courgettel}}
@index{broccoli}
Oindex{cauliflower,seealso={broccoli}}

Suppose the document contains:

\GlsXtrLoadResources [src={entries}]

\begin{document}

\gls{cucurbit}, \gls{pumpkin}, \gls{melon}, \gls{broccoli},
\gls{marrow}, \gls{cauliflower}.
\printunsrtglossary[title=Index]

\end{document}

This uses the default selection={recorded and deps} setting, which selects recorded en-
tries (cucurbit, pumpkin, melon, broccoli, marrow and cauliflower) and their dependencies.
In this case, the dependencies are: courgette (because it’s listed in the marrow’s seealso
field), gourd (because it’s listed in the cucurbit’s see field), and cucumber (because it’s listed
in the gourd’s see field). The resulting list is:

broccoli 1

cauliflower 1, see also broccoli
courgette

cucumber

cucurbit 1, see gourd

gourd see pumpkin, cucumber & melon
marrow 1, see also courgette

melon 1

pumpkin 1

This means that courgette and cucumber appear in the glossary without a location list. If
this was an actual glossary with descriptions, this may not be a problem, but it looks strange
for an index since the cross-reference essentially leads the reader to a dead end.

Switching to selection={recorded no deps} will remove courgette, gourd and cucum-
ber but the see and seealso fields will be lost. Since gourd references both pumpkin and
melon (which are used in the document), it might be useful to keep the gourd entry. The aim
of pruning is to remove the unwanted cucumber entry from the gourd’s see list but retain
pumpkin and melon.

An appropriate filter is needed to switch on pruning. (This is in addition to the criteria
that the pruned entry has no records, isn’t dependent on another entry, and hasn’t previously
been selected.) This type of pruning is usually only necessary for indexes so a useful filter
may be simply on the entry type (either @index or @indexplural):

\GlsXtrLoadResources[src={entries},
prune-see-match={entrytype={index(plural) ?}}]

211

5.7 Field and Label Options

Another possibility is to filter on an empty description:
\GlsXtrLoadResources[src={entries},prune-see-match={description={3}}]

The result is that the cauliflower and marrow entries keep their seealso lists (since this
option only applies to see lists) and the courgette entry has been added (because it’s in
the marrow entry’s seealso list). The gourd entry is removed from the cucurbit’s see list
(because it matches the criteria) and is not selected (because it’s no longer a dependency).

In this case, I'd like to include the gourd entry because it has the see field set. This means
adjusting the criteria so that only entries without the see field can be pruned:

\GlsXtrLoadResources[src={entries},
prune-see-match={entrytype={index(plural)?},see={}1}]

This means that gourd is now selected (and retained in the cucurbit’s see field) but cucumber
is removed from the gourd’s see field.

A similar method can be applied for the seealso fields using prune-seealso-match.
There’s no applicable setting for the alias field (since it’s expected that the alias be present
due to the nature of the way the alias field works).

For convenience, the prune-xr option is provided as a shortcut. If the resource command
in the above example is modified to:

\GlsXtrLoadResources[src={entries}, prune-xr]

then the resulting list will be:

broccoli 1

cauliflower 1, see also broccoli
cucurbit 1, see gourd

gourd see pumpkin & melon
marrow 1

melon 1

pumpkin 1

Note that if the pumpkin and melon references are removed from the document, then
gourd will still be selected but will have no cross-reference. This is because the cucurbit
entry is checked for pruning while the gourd entry still has a non-empty see field so it’s not
removed from the cucurbit entry.

There are two ways around this problem: either switch the definitions of cucurbit and
gourd around in the .bib file or use prune-iterations to reprune (in this case, prune
-iterations={2} is sufficient).

This setting is only compatible with the “recorded and dep” selection criteria:
selection={recorded and deps}, selection={recorded and deps and see}
and selection={recorded and deps and see not also}.

212

5.7 Field and Label Options

prune-see-op=(value)

If the value of prune-see-match contains more than one (key)=(pattern) element, the prune
-see-op determines whether to apply a logical AND or a logical OR. The (value) may be
either and or or. The default is prune-see-op={and}.

prune-seealso-match=(key=value list)

As prune-see-match but for seealso fields. If more that one pattern match is supplied,
prune-seealso-op determines whether to apply a logical AND or a logical OR.

This setting is only compatible with the “recorded and dep” selection criteria:
selection={recorded and deps}, selection={recorded and deps and see}
and selection={recorded and deps and see not also}.

prune-seealso-op={value)

If the value of prune-seealso-match contains more than one (key)=(pattern) element, the
prune-seealso-op determines whether to apply a logical AND or a logical OR. The (value)
may be either and or or. The default is prune-seealso-op={and}.

prune-iterations=(number)

If you have cross-reference trails, you may need to reprune. The value of this options indi-
cates the number of pruning iterations. The default is 1. The higher the number, the longer
bib2gls will take to complete. The value can’t be less that 1.

The maximum number of iterations is capped at 20. A cross-reference trail that long is
excessive for an index.

bibtex-contributor-fields=(list)

This option indicates that the listed fields all use BBIEX’s name syntax (as used in BBIEX’s
author and editor fields). The (list) value is required for this key but may be empty, which
indicates an empty set of fields (that is, the setting is switched off).

The values of these fields will be converted into the form:

\bibglscontributorlist{(contributor list)}{(n)}

where (n) is the number of names in the list and (contributor-list) is a comma-separated list
of names in the form:

\bibglscontributor{(forenames)}{(von-part)}{ (surname){ (suffix)}

The \bibglscontributorlist command is initially defined in bib2gls’s interpreter to
just do the first argument and ignore the second. This means that if you’re sorting on this
field, the “and” part between the final names doesn’t appear in the sort value. The actual

213

5.7 Field and Label Options

definition of \bibglscontributorlist provided in the .glstex file depends on whether
or not \DTLformatlist is defined. (Note that glossaries automatically loads datatool-base
so this command will be defined if you have at least v2.28 of datatool-base.)

For example, if the name field is specified as:

name={John Smith and Jane Doe and Dickie von Duck}
then bibtex-contributor-fields={name} will convert the name field value to:

\bibglscontributorlist{’
\bibglscontributor{John}{}{Smith}{},%
\bibglscontributor{Jane}{}{Doe}{},%
\bibglscontributor{Dickie}{von}{Duck}{}}{3}

With contributor-order={von} the sort value obtained from this field will be:
Smith, John,Doe, Jane,von Duck, Dickie

With one of the locale sort methods and with the default break-at={word}, this will end
up as:

Smith|John|Doe|Jane|von|Duck|Dickie

contributor-order=(value)

The \bibglscontributor command is defined in bib2gls’s interpreter and its definition
is dependent on this setting. The (value) may be one of (where the parts in square brackets
are omitted if that argument is empty):

« surname: \bibglscontributor expandsto (surname)|, (suffix)][, (forenames)][, (von-

part)];
. von: \bibglscontributor expandsto [(von-part) [(surname)[, (suffix)][, (forenames)];

+ forenames: \bibglscontributor expands to [{forenames) |[(von-part) |{surname)
[, (suffix)].

The default value is von. Note that if you have multiple resource sets, this option governs the
way bib2gls’s version of \bibglscontributor behaves. The actual definition is written
to the .glstex using \providecommand, which means that ETEX will only pick up the first
definition.

For example:

\newcommand*{\bibglscontributor}[4]{/
#1\ifstrempty{#2}3{}{ #2} #3\ifstrempty{#4}{}{, #4}J
}

\GlsXtrLoadResources|[
src={entries},’ data in entries.bib
bibtex-contributor-fields={name}

214

5.7 Field and Label Options

This will display the names in the glossary with the forenames first, but bib2gls will sort
according to surname.

An alternative approach, if you need an initial resource set such as with the no-interpret
-preamble.bib file:

\GlsXtrLoadResources[
src={no-interpret-preamble},
interpret-preamble={false},
bibtex-contributor-fields={name},
contributor-order={forenames}

\GlsXtrLoadResources|[
src={entries},’ data in entries.bib
bibtex-contributor-fields={name}

]

Note the need to use bibtex-contributor-fields={name} in the first resource set even
though there are no entries in the .bib file. This is because the definition of \bibgls-
contributor is only written to the . glstex file if bibtex-contributor-fields has been
set to a non-empty list. The second resource set will use the default bibtex-contributor
-fields={von} setting when obtaining the sort value.

encapsulate-fields={(key=value list)}

This option should take a comma-separated list of (field)=(cs-name-1arg) values, where (cs-
name-1larg) is the name of a control sequence that takes one argument. The value is required
for this key but may be empty, which indicates an empty set (that is, the setting is switched
off).

During the processing stage, each field identified in the list (if defined) will have its value
replaced with:

\(cs-name-1arg){(value)}
where (value) was its previous value. An empty list switches off encapsulation (the default).
This action overrides any previous use of encapsulate-fields within the same resource

set and is always performed before encapsulate-fields#*, regardless of the order in the
resource set’s list of options.

encapsulate-fields#*={(key=value list)}

This option should take a comma-separated list of (field)=(cs-name-2arg) values, where (cs-
name-2arg) is the name of a control sequence that takes two arguments. The value is required
for this key but may be empty, which indicates an empty set (that is, the setting is switched
off).

During the processing stage, each field identified in the list (if defined) will have its value
replaced with:

215

5.7 Field and Label Options

\(cs-name-2arg){(value)}{(label)}

where (value) was its previous value and (label) is the entry’s label (including prefix, if
appropriate). An empty list switches off encapsulation (the default).

This action overrides any previous use of encapsulate-fields#* within the same re-
source set, and is always performed after encapsulate-fields, regardless of the order in
the resource set’s list of options, so if the same field is listed in both settings, its value will
end up as:

\(cs-name-2arg){\(cs-name-1arg){(value)}}{(label)}

An alternative is to use the more complex assign-fields option.

format-integer-fields={(key=value list)}

This option should take a comma-separated list of (field)=(format) values, where (format) is
a string format pattern that contains a single numeric specifier. This will convert the value
stored in the identified field to the given format. If the field doesn’t contain an integer value
it won’t be changed. If the field contains a decimal value use format-decimal-fields
instead. This setting is performed before field encapsulation.

Since format patterns uses % as a placeholder, which can be problematic in the resource
command, you will need to use \% instead. You may also use \#, \$, \&, \{, \}, _ and \\ to
indicate the corresponding literal character. You can use \u(XXXX) to indicate a character
by its hexadecimal value, but remember that the resource options will be expanded when
they are written to the resource file so use \glshex or \string\u.

If you want to format the definitionindex field you must use save-definition-index
first. For example, to save this field and then zero-pad it to four digits:

save-definition-index,
format-integer-fields={definitionindex=\7%04d}

This option can’t be used for the useindex field created with save-use-index as that field
isn’t set until after the field modifications are made.
format-decimal-fields={(key=value list)}

As format-integer-fields but for decimal values. If a field contains an integer then:

o if format-integer-fields has also been used to set a format for the given field, the
integer format will take precedence;

« otherwise the integer value will be treated as a decimal number.
If you get an error like:
Error: d != java.lang.Double

then it means you have used an invalid specifier. (The above error results from using %d
instead of %f or %g.)

216

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#syntax

5.7 Field and Label Options

interpret-fields={(list)}

This option indicates that the listed fields should be replaced by their interpreted values. The
value is required for this key but may be empty, which indicates an empty set of fields (that
is, the setting is switched off). Other fields not listed may still be interpreted depending on
other settings. As with the sort field, any special characters are replaced with commands
like \glsbackslash and \bibglsdollarchar. This option is applied after field-case
-change (if set).

For example, suppose I have a file entries.bib that contains definitions like:

@symbol{pi,
name={\ensuremath{\pi}},
description={the ratio of a circle's circumference to its diameter},

3

Osymbol{sigma,
name = {\ensuremath{\sigmal}},
description = {standard deviation}

3

Instead of having a list of terms (glossary), suppose I want to have stand-alone definitions,
where the term appears in a section heading. I could define a command like this:

\newcommand{\definition} [1]{%

\ifglsentryexists{#11}/

{7
\section[\glsentryname{#}]{\glsadd{#1}\glsxtrglossentry{#1}}/
\Glossentrydesc{#1}\glspostdescription

Y

{\section[Missing “#1']J{\glsadd{#1}}}/

}

which can be used in the document:

\tableofcontents
\definition{pi}
\definition{sigma}

A problem with this definition of my custom command occurs if I add hyperref to the docu-
ment, because this tries to write \pi and \sigma to the PDF bookmarks, which doesn’t work
because those commands can’t be automatically converted to characters permitted in a PDF
string. This leads to a warning from hyperref:

Token not allowed in a PDF string (Unicode)

Ideally I’d like to be able to convert these symbols to Unicode so that they can appear in the
bookmarks. Since bib2gls’ interpreter recognises these commands, I can get it to make the
conversion instead of trying to implement a method within TgX:

217

5.7 Field and Label Options

\glsaddstoragekey{pdfname}{}{\pdfname}

\GlsXtrLoadResources|[
src={entries},
replicate-fields={name=pdfname},
replicate-missing-field-action={fallback},
interpret-fields={pdfname}

]

This first copies the name field to the custom pdfname and then interprets the copy. This
leaves the name field with the EIEX code to produce the symbol in the document, but the
pdfname field ends up with all markup stripped by the interpreter and the \pi and \sigma
are converted to the Unicode characters 0x1D70B (mathematical italic small pi) and 0x1D70E
(mathematical italic small sigma). With XglTEX or LuaSIgX these characters can be written
to the PDF bookmarks by adjusting the definition of the custom command:

\newcommand{\definition}[1]{%
\ifglsentryexists{#1}%
{
\section
[\texorpdfstring{\glsentryname{#1}}{\pdfname{#1}1}]
{\glsadd{#1}\glsxtrglossentry{#1}}/
\Glossentrydesc{#1}\glspostdescription

Y

{\section[Missing “#1']{\glsadd{#1}}}}
With pdfEIEX and fontenc, you will need hyperref’s unicode option:
\usepackage [unicode] {hyperref}

If you still encounter problems with the Unicode characters not appearing in the PDF book-
marks, then try the hex-unicode-fields option. For example:

hex-unicode-fields={pdfname}

This still requires hyperref’s unicode option.

interpret-fields-action={(value)}
This option governs the behaviour of interpret-fields. Available values are:
« replace: replace the field content with its interpreted value (default);

« replace non empty: only replace the field content with its interpreted value if the
interpreted value isn’t an empty string.

If a field value consists solely of commands that are unknown to the interpreter, then the
resulting value will end up empty. In this case, it may be more appropriate to leave the field
unchanged.

218

5.7 Field and Label Options

hex-unicode-fields={(list)}

This option will convert any Unicode characters (outside of the Basic Latin set) that are found
in the listed fields into \bibglshexunicodechar{(hex-code)} where (hex-code) is the hex-
adecimal character code.

The (list) should be a comma-separated list of field names. This action is performed after
interpret-fields.

If the field contents need to be added to the PDF bookmarks (as in the earlier example) then
you need to make sure you use hyperref’s unicode option otherwise you’ll get the warning:

Token not allowed in a PDF string (PDFDocEncoding):
removing ~\char'

and the bookmarks will show " (hex-code) instead of the Unicode character.

date-time-fields=(list)

This option indicates that the listed fields all contain date and time information. Primary en-
tries will have these fields parsed according to date-time-field-format and date-time
-field-locale and dual entries will have these fields parsed according to dual-date-time
-field-formatanddual-date-time-field-locale. Ifthe field value is missing or doesn’t
match the given pattern it remains unchanged, otherwise it’s converted into the form:

\bibglsdatetime{(year)}{(month)}{(day-of-month)}{(day-of-week)}{(day-of-year)}
{(era)}{(hour) }{(minute) }{(second) }{ (millisec) }{ (dst) }{(zone) }{ (original) }

where (original) is the value of the field before conversion. If the interpreter is on, the value
will be interpreted before being parsed if it contains \, $, {, } or ~. (Remember that ~ is
converted to the non-breaking space character 0xA0 unless —-break-space is used.)

date-fields=(list)

As date-time-fields but for fields that only contain date (not time) information. If parsed
correctly, the field is converted to:

\bibglsdate{(year)}{(month)}{(day-of-month)}{(day-of-week)}{{day-of-year)}
{(era)}{(original)}

The fields are parsed according to date-field-format and date-field-locale for pri-
mary entries and according to dual-date-field-format and dual-date-field-locale
for dual entries.

time-fields=(list)

As date-time-fields but for fields that only contain time (not date) information. If parsed
correctly, the field is converted to:

\bibglstime{(hour)}{ (minute)}{(second)}{(millisec) }{(dst)}{(zone)}{(original)}

219

5.7 Field and Label Options

The fields are parsed according to time-field-format and time-field-locale for pri-
mary entries and according to dual-time-field-format and date-time-field-locale
for dual entries.

date-time-field-format=(value)

This option also sets dual-date-time-field-format={(value)}. The value is the format
pattern used when parsing fields identified by date-time-fields. The (value) is as for
date-sort-format.

date-field-format={value)

This option also sets dual-date-field-format={(value)}. The value is the format pat-
tern used when parsing fields identified by date-fields. The (value) is as for date-sort
-format.

time-field-format=(value)

This option also sets dual-time-field-format={(value)}. The value is the format pat-
tern used when parsing fields identified by time-fields. The (value) is as for date-sort
-format.

date-time-field-locale=(value)

This option also sets dual-date-time-field-locale={(value)}. The value is the locale
used when parsing fields identified by date-time-fields. The (value) is as for date-sort
-locale.

date-field-locale={value)

This option also sets dual-date-field-locale={(value)}. The value is the locale used
when parsing fields identified by date-fields. The (value) is as for date-sort-locale.

time-field-locale=(value)

This option also sets date-time-field-locale={(value)}. The value is the locale used
when parsing fields identified by time-fields. The (value) is as for date-sort-locale.

Prefix Fields

If you use the glossaries—prefix package, the prefix set of fields become available (prefix,
prefixplural,prefixfirst and prefixfirstplural). The default behaviour of \pgls is
for no separator between the prefix and the text produced with \gls. This is because there
are situations where there shouldn’t be a space, although a space is more commonly required.

This means that a space needs to be appended to the required prefix fields, but an actual
space character can’t be used because xkeyval trims leading and trailing spaces. The \space

220

5.7 Field and Label Options

command needs to be used instead, but there are also situations where an non-breakable
space should be used (for example, where the prefix is a single character). It’s a bit tiresome
having to remember to put \space or ~ at the end of the field value.

The append-prefix-field option allows the automatic insertion of a space, but it may
be used without the glossaries—prefix package. The fields that contain prefixes are identified
by prefix-fields.

If you have any dual entries, then bib2gls will also recognise the special internal fields
dualprefix, dualprefixplural, dualprefixfirst and dualprefixfirstplural.

prefix-fields=(list)

Identifies the fields that are used to store prefixes. The default set is: prefix, prefixfirst,
prefixplural,prefixfirstplural, and their dual counterparts dualprefix, dualprefix-
first, dualprefixplural and dualprefixfirstplural.

append-prefix-field=(value)
Allowed values are:
« none: don’t append a space to the prefix fields (default);

« space: append the command identified by append-prefix-field-cs (\space by de-
fault) to the prefix field unless the field value ends with a character identified by append
-prefix-field-exceptions oracommand identified by append-prefix-field-cs
—exceptions. Note that if the field value ends with anything else (such as an empty
group) then these exceptions won’t apply.

« space or nbsp: as above but uses ~ instead of \space if the field value matches the
pattern given by append-prefix-field-nbsp-match.

append-prefix-field-cs=(cs)

Identifies the command (cs) that should be used to append to the prefix fields. The default
value is \space. Remember to use \string or \protect to prevent the command from
being expanded as it’s written to the .aux file.

append-prefix-field-exceptions=(sequence)

This setting identifies the set of characters that, if found at the end of a prefix field, prevent
append-prefix-field from appending a space (either \space or ~).

The value should be a sequence of characters. You may use \string\u(hex) to iden-
tify a character by its hexadecimal code. Spaces are ignored, so append-prefix-field
—exceptions={' - }isequivalent to append-prefix-field-exceptions={'-}.

The default set is the straight apostrophe character (0x0027), the hyphen-minus character
(0x002D), the tilde character (~), the hyphen character (0x2010), the non-breaking hyphen
(0x2011), and the right single quotation mark (0x2019).

221

5.7 Field and Label Options

append-prefix-field-cs-exceptions=(sequence)

This setting identifies the set of commands that, if found at the end of a prefix field, prevent
append-prefix-field from appending a space (either \space or ~). Any spaces found in
(sequence) are ignored. The default setting is the set: \space, \nobreakspace and _.

Remember that you will need to use \string or \protect to prevent the command from
being expanded while the resource options are written to the . aux file.

append-prefix-field-nbsp-match=(pattern)

The value is the regular expression that identifies prefixes that should be followed by ~ in-
stead of \space. The default is append-prefix-field-nbsp-match={.} which indicates
a single character.

Case-Changing

The glossaries-extra package comes with the category attributes glossdesc and glossname,
which may take the values firstuc or title. These don’t change the actual name or
description fields, but instead \glossentryname and \glossentrydesc (which are used
by the default glossary styles) check for the corresponding attribute and apply the appropri-
ate case-change to the field value.

So \glossentryname will use \Glsentryname if the glossname attribute for the given
entry is set to firstuc and \glossentrydesc will use \Glsentrydesc if the glossdesc
attribute is set to firstuc. The title setting will instead use \capitalisewords applied
to the field value.

The resource options described in this section provide an alternative to those attributes that
actually modify the relevant field (rather than just adjusting the style code used to display
it). There are two forms of modification: the field is adjusted so that the original value is
encapsulated by a command or bib2gls will perform the actual case-change according to
its own algorithm. The results can vary according to the field content.

Where bib2gls itself performs the case change, its case-changing functions will use the
resource locale, but whether or not bib2gls recognises the correct rules for the locale de-
pends on whether or not the locale is correctly supported by the Java locale provider. The
language resource file may provide assistance with case-conversion.

Note the difference between \NoCaseChange (which prevents case-changing for both
bib2gls and in the KTEX document) and \BibGlsNoCaseChange (which only prevents
case-changing in bib2gls). The options that defer the case-change action to EIEX,
such as uc-cs, will treat \NoCaseChange as an exclusion but not \BibGlsNoCase-
Change.

Each of the case-changing resource options may take one of the following values:

+ none: don’t apply any case-changing (default);

222

5.7 Field and Label Options

+ lc-cs: make bib2gls behave as though the field assignment:
(field) = {(text)}

had actually been specified as:

(field) = {\bibglslowercase{(text)}}

which uses TgX to convert the field to lower case;
« uc-cs: make bib2gls behave as though the field assignment:

(field) = {(text)}

had actually been specified as:

(field) = {\bibglsuppercase{(text)}}

which uses TgX to convert the field to upper case;
« firstuc-cs: make bib2gls behave as though the field assignment:

(field) = {(text)}

had actually been specified as:

(field) = {\bibglsfirstuc{(text)}}

which uses TgX to convert the field to first-letter upper case;
« title-cs: make bib2gls behave as though the field assignment:

(field) = {(text)}

had actually been specified as:

(field) = {\bibglstitlecase{(text)}}

which uses TgX to convert the field to title case;

« lc: convert to lower case by making the appropriate modifications to tokens in the
field value that have a known lower case alternative (see below);

« uc: convert to upper case by making the appropriate modifications to tokens in the
field value that have a known upper case alternative (see below);

« firstuc: convert to first letter upper case by making the appropriate modification, if
it has a known upper case alternative (see below);

223

5.7 Field and Label Options

« title: convert to title case by making the appropriate modifications to the first letter
of each identified word in the field value that has a known upper case alternative (see
below).

A word-boundary is identified according to the word-boundaries setting. Words to
be excluded from the case-changing (unless they occur at the start) can be identified
with \MFUnocap in the @preamble or you can use --packages mfirstuc-english
for the exclusion list provided by the mfirstuc-english package. Alternatively, you can
use ——custom-packages to load a simple package that contains the required \MFUno-
cap commands (in a similar style to mfirstuc-english).

The bib2gls word-boundary implementation is slightly different with this setting than
with the \capitalisewords command (implemented in TgX or by the TgX Parser Li-
brary when interpreting field values). Only words in the exclusion list that start with
an alphabetical character can be matched. Punctuation following a word-boundary is
not considered part of the next word. If you want to identify that a particular character
forms a word break, you can use \MFUwordbreak{(char)}. For example:

name={some word\MFUwordbreak{/}phrase}

If you need to selectively change the case, based on some condition (such as the entry
type) then you can use the assign-fields option instead, but remember that you will need
the override setting on. For example:

assign-fields={
name =[o] \TITLE{ name }

[entrytype -> original = "entry"]
}

This will convert the name field to title case for entries that were defined in the .bib file with
@entry. Note that if you also use a case-changing option, for example, name-case-change,
then all entries will have the change applied, according to the option’s designated behaviour,
regardless of whether or not the applicable field has already been altered by assign-fields.

Major changes have been introduced to mfirstuc v2.08. Some of the information below
refers to older versions and is not applicable with mfirstuc v2.08+. See the mfirstuc
manual for further details.

The firstuc-cs and firstuc options are essentially a sentence case change, but there’s
no check for sentence-breaks within the value, so even if the value contains multiple sen-
tences, only the first is changed. If the text to be changed starts with a punctuation character
it should be encapsulated with \MFUskippunc to apply the case-change to the following
object. For example:

name={\MFUskippunc{'}tis}

If the firstuc option is applied to the name field this will be converted to:

224

5.7 Field and Label Options

name={\MFUskippunc{'}Tis}

Using \NoCaseChange (provided by textcase) instead will have the same effect, but this isn’t
consistent with the behaviour of \makefirstuc so it’s best to use \MFUskippunc instead.

The (option)-cs settings defer the actual case-changing to TgX, which means that the case-
changing has to be applied every time the field is typeset (and it introduces non-expandable
content to the field value). Be aware of the limitations of using any of the case-changing
commands. See the textcase and mfirstuc package documentation for further details [1, 11].

For the settings where bib2gls itself performs the case-change, then bib2gls will iterate
over each token of the field value and apply the rules listed below. Note that the case-change
implemented by bib2gls recognises the resource locale, but whether or not it recognises
the correct rules for the locale depends on whether or not the locale is correctly supported
by the Java locale provider.

1. If the token is a normal Unicode alphabetic character, it will be replaced with the cor-
responding upper or lower case character, as appropriate. In some cases, a single char-
acter, such as 8, is replaced by multiple characters, such as SS.

For title and firstuc, the title case character is used as the replacement, for uc the
upper case character is used as the replacement, and for 1c the lower case character is
used as the replacement. Many characters have the same upper and title case alterna-
tive (for example, “a” will be converted to “A” for the title, firstuc and uc settings),
but some characters have different title and upper versions (for example, the digraph
“dz” has the title version “Dz” and upper case version “DZ”).

If the option is firstuc then all the remaining tokens are skipped. If the option is
title then the subsequent tokens are skipped until a word-boundary is found.

2. If the token is a normal Unicode character that isn’t alphabetical, then this token will
be skipped for all options.

3. If $(maths)$ is encountered, it will be skipped. If the option is firstuc then all re-
maining tokens are skipped, so no case-change will be performed.

4. If a group {(content)} is found, then the case-change is applied to the entire (content)
(which may be empty). This corresponds to the way \makefirstuc and \capitalise-
words work if a word starts with a group. Note that with firstuc and title the group
content will be converted according to uc, so the normal upper case character is used
rather than the title case character (if they are different).

If the option is firstuc then all the remaining tokens are skipped. If the option is
title then the subsequent tokens are skipped until a word-boundary is found. A
word-boundary can be marked up with \MFUwordbreak.

5. If a control sequence \(csname) is found, then:

a) If the control sequence is \protect, this token is skipped for all options.

225

b)

5.7 Field and Label Options

With firstuc and title, if \MFUskippunc{(text)} or \NoCaseChange{ (text)}
occurs at the start of a word, then bib2gls will act as though the word hasn’t
started yet (so the next token will be considered for a case-change).

If the control sequence is one of: \o, \0, \1, \L, \ae, \AE, \oe, \OE, \aa, \AA,
\ss, \SS, \ng, \NG, \th, \TH, \dh, \DH, \dj or \DJ, then it’s replaced with its
case-change counterpart (if not already the correct case).

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

If the control sequence is in the no-case-change-cs list or is \ensuremath, \si
or if (csname) ends with “ ref ” (for example, \ref or \pageref) then the control
sequence and its argument is ignored. In the case where (csname) ends with
“ref ”, a following star (*) or optional argument before the mandatory argument
will also be skipped. This allows for some common cross-referencing commands,
such as hyperref’s \autoref, which may have a starred form, but does not allow
for more complicated commands with multiple arguments.

If the option is firstuc then all the remaining tokens are skipped (so no case-
change will be performed). If the option is tit1le then the subsequent tokens are
skipped until a word-boundary is found (so no case-change is performed for this
word).

If the control sequence is \glsentrytitlecase then:
1lc the control sequence is converted to \glsxtrusefield;
uc the control sequence is converted to \GLSxtrusefield;

firstuc the control sequence is converted to \Glsxtrusefield and the re-
maining tokens are skipped;

title the control sequence is left unchanged and subsequent tokens are skipped
until a word-boundary is found.

The field and entry label arguments are skipped.

If the control sequence is \glshyperlink then the case-change is applied to its
optional argument. (If there was no optional argument in the original field value,
one will be inserted.) The label argument is skipped.

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

If the control sequence is \glsdisp, \glslink, \dglsdisp or \dglslink then
the case-change will be applied to the appropriate argument. The optional argu-
ment (if present) and the label are skipped.

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

226

5.7 Field and Label Options

h) If the control sequence has a known case variant, it will be substituted. For ex-

)

ample, \gls will be changed to \G1s or \GLS. In some cases there isn’t an appro-
priate variant. For example, \glsentrytext has a first-letter upper case version
\Glsentrytext, but not an all-caps version.

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

If the control sequence is followed by a group, then the appropriate case-change
is applied to the group contents. Unlike step 4, the case-change isn’t applied to
the entire group content with firstuc and title. (Again, this follows the way
that \makefirstuc and \capitalisewords work.)

If there are subsequent groups, they won’t be considered arguments, but will be
treated as groups, as per step 4. (This will only affect the title setting as they
will be skipped by the firstuc setting.) For complex cases, consider using a
semantic command that hides non-textual context such as the \strong example
described on page 121.

Otherwise the control sequence is skipped.

6. Anything else is skipped.

For example, if an entry is defined as:

O@abbreviation{html,
short = {HTML},

long

{hypertext markup language},

description={a markup language for creating web pages}

}

then:

\GlsXtrLoadResources[
short-case-change={1c},
long-case-change={title},

description-case-change={firstuc}

]

will make the entry behave as if it had been defined as:

O@abbreviation{html,

short
long

{html},
{Hypertext Markup Languagel},

description={A markup language for creating web pages}

}

whereas:

227

5.7 Field and Label Options

\GlsXtrLoadResources[
short-case-change={lc-cs},
long-case-change={title-cs},
description-case-change={firstuc-cs}

]

will make the entry behave as if it had been defined as:

@abbreviation{html,

short = {\bibglslowercase{HTML}},

long = {\bibglstitlecase{hypertext markup languagel}},
description={\bibglsfirstuc{a markup language for creating web pagesl}}

}

If the given field is missing, no change is made, except under certain circumstances (see the
relevant resource option for details). For example, if an abbreviation is simply defined as:

O@abbreviation{html,
short = {html},
long = {hypertext markup language}

}
then:

\GlsXtrLoadResources[
name-case-change={uc},
description-case-change={title}

]

won’t have an effect. Although the default long-short abbreviation style sets the name and
description fields, bib2gls doesn’t have access to this information.

Remember that you can create missing fields by copying the value from another field. So
if the resource options are changed to:

\GlsXtrLoadResources[
name-case-change={uc},
description-case-change={title},
replicate-fields={short=name,long=description}

]
then bib2gls will act as though the entry had been defined as:

@abbreviation{html,

short = {html},

long = {hypertext markup languagel,

name = {HTML},

description = {Hypertext Markup Language}
}

228

5.7 Field and Label Options

If the long-short-sc abbreviation style is set (before \GlsXtrLoadResources) then this will
override the default style for the name and description, so \gls{html} will display the
short form using \textsc{html} but the name in the glossary will be displayed using just
HTML.

Note that with @index the name and text fields will automatically be created if they are
missing and name-case-change is used. For example, if an entry is defined as:

O@index{duck}

then name-case-change={firstuc} will make this entry behave as though it was defined
as:

Oindex{duck,
name = {Duck},
text = {duck}

}

Suppose I have a slightly eccentric abbreviation definition:

@abbreviation{html,

short = "ht\emph{ml}",

long = "hypertext markup language"
}

then short-case-change={uc} would convert the value of the short field into:
HT\emphML

Note that \emph isn’t modified as it’s recognised as a command. There’s a difference between
a group that follows a control sequence and one that doesn’t. For example:

O@abbreviation{html,

short = "{ht}ml",

long = "hypertext markup language"
}

In this case short-case-change={firstuc} will convert the short field value to:
{HT}ml

(The entire contents of the group {ht} has been converted.) Whereas with:

@abbreviation{html,

short = "\emph{ht}ml",

long = "hypertext markup language"
}

then short-case-change={firstuc} will convert the short field value to:

229

5.7 Field and Label Options

\emph{Ht}ml

(Only the first letter of the argument {ht} has been converted.)
There’s no attempt at interpreting the field contents at this point (but the value may later
be interpreted during sorting). For example, suppose a name field is defined using:

name = "z\ae\oe",
then with name-case-change={uc}, the value would be converted to
Z\AE\OE

because \ae and \oe have known upper case versions.
With name-case-change={uc-cs}, the name value would be converted to:

\bibglsuppercase{z\ae\oe}

If the interpreter is used during sorting, the sort value will be set to ZEE because the inter-
preter recognises all three commands.

You can use \NoCaseChange{(text)} to prevent the given (text) from having the case
changed. For example, if the short field is defined as:

short = {a\NoCaseChange{bc}d}
then with short-case-change={uc}, this would be converted to
A\NoCaseChange{bc}D

Note that with firstuc and title, if \MFUskippunc{(text)} occurs at the start of a word
then it’s skipped, and the case change is applied to the material following its argument. For
example, suppose the short field is defined as:

short={\MFUskippunc{h}tml}
then the result is:
\MFUskippunc{h}Tml

whereas with:

short={{}html}

then the result is just {}html (since the case change is applied to the empty group, which
has no effect).

If you have a command that takes a label or identifier as an argument then it’s best to
hide the label in a custom command. For example, if the short field in the .bib definition
is defined as:

short = "ht\textcolor{red}{ml}",
then with short-case-change={uc} this would end up as:
HT\textcolor{RED}{ML}

which is incorrect. Instead, provide a command that hides the label (such as the \strong
example described on page 121).

230

5.7 Field and Label Options

no-case-change-cs=(list)

Instructs the non-TEX case-changing options (where bib2gls, not TgX, performs the mod-
ification) to treat the commands whose control sequence names are given in the comma-
separated (list) in the same way as it treats \ensuremath etc. That is, the case-change is
omitted for the argument that follows any of those commands.

For example, this manual defines some semantic commands such as \fieldfmt (to format
field names), \abbrstylefmt (to format abbreviation style names) and \glostylefmt (to
format glossary style names). If any these occur in section and subsection headings (which
are converted to title case) then the case-change would produce an inappropriate result.
These formatting commands shouldn’t have their argument changed so they are identified
with:

no-case-change-cs={fieldfmt,abbrstylefmt,glostylefmt}

word-boundaries=(list)

Governs how the title case-change option determines word boundaries. The (list) must
contain one or more of the following keywords:

white space any white space Unicode character that is not a non-breakable space indicates
a word-boundary;

cs space the control sequences \space or \, indicate a word-boundary;

dash a Unicode character that belongs to the “Punctuation, Dash” block indicates a word-
boundary;

nbsp the ~ active character or the Unicode non-breakable characters 0x00A0, 0x2007 and
0x202F indicate a word-boundary.

Any keyword that is not listed indicates that particular setting is off. This option is not cu-
mulative. Any subsequent use of word-boundaries within the same set of resource options
will override previous settings.

The default setting is word-boundaries={white space,cs space}, which excludesnon-
breakable spaces and dashes.

Note that you can explicitly markup word-boundary punctuation using \MFUwordbreak.
For example:

name = {a book of rhyme\MFUwordbreak{/}verse}

short-case-change=(value)

Applies a case-change to the short field (if present). This option may take one of the values
described above.
See dual-short-case-change to adjust the dualshort field.

231

5.7 Field and Label Options

long-case-change=(value)

Applies a case-change to the long field (if present). This option may take one of the values
described above.
See dual-long-case-change to adjust the duallong field.

name-case-change=(value)

Applies a case-change to the name field. This option may take one of the values described
above.

If the text field hasn’t been set, the name value is first copied to the text field. If the
name field hasn’t been set (for example, with the @index entry type), it’s copied from the
fallback value (which depends on the entry type, see section 5.8) unless the entry type is
O@abbreviation or @acronym, in which case if the name field is missing no action is per-
formed.

description-case-change=(value)

Applies a case-change to the description field (if present). This option may take one of the
values described above.

field-case-change={(key=value list)}

A general case-change instruction. The value should be a comma-separated list of (field)=
(setting) for each field that needs a case-change applied. The value is required for this key
but may be empty, which indicates this option is switched off.

The (setting) should be the same as the permitted values for the above options. This option
is applied after all fields have been parsed but before interpret-fields. If the specified
field is missing, the fallback for that field (if known, see section 5.8) is copied into the field.
For example:

field-case-change={userl=uc,user2=firstuc}
This manual provides a custom storage key called nametitle:
\glsxtrprovidestoragekey{nametitle}{}{}

The resource options copy the name value to this custom field and convert nametitle to title
case:

replicate-fields={name=nametitle},
field-case-change={nametitle=title},

This means that it’s possible to fetch the value of nametitle instead of name, which provides
an expandable title case form that’s suitable for the PDF bookmarks. (Note that KTgX3 now
provides some expandable case-changing commands.)

This option isn’t cumulative. If used multiple times in the same resource set, the last
instance will be the one used. If the key=value list is missing, no general case-changing is
applied (the default).

232

5.8 Field Fallbacks

5.8 Field Fallbacks

The options in this section don’t modify any field values but provide instructions on what
to do if bib2gls wants to know the value of a field where the field hasn’t been explicitly
set. The most common case is querying the sort field value with the default sort-field
={sort} setting. Being able to vary the fallback used according to the entry type allows a
more flexible approach than explicitly setting the sort field in the .bib file.

Note that if you specify a different field to use for the sort value with sort-field then the
fallback for that field will be used if that field is missing. The sort fallbacks will be irrelevant
if the sort field isn’t being queried. If the fallback system fails to provide a value for the field
identified by sort-field then bib2gls will follow the rule given by the missing-sort
-fallback setting.

If you require a complex sort value that can’t be implemented by the fallback system, you
can use assign-fields to explicitly set the sort field to a string expression (section 5.1).
Bear in mind that if the sort field is actually set to a value, either in the .bib file or through
resource options, then the sort fallback won’t be used and the sort fallback options describe
in this section won’t have any effect.

There are other fields that bib2gls may want to query that won’t necessarily be set in
the .bib file but may be inferred from another field. For example, if the sort field fallback
references the name field then the name field will also need a fallback if it hasn’t been set.

Another possibility is that the interpreter encounters content that includes commands
such as \gls. Since the interpreter can’t tell at what point in the document the first use flag
is changed, \gls is treated as \glstext (and similarly \glspl is treated as \glsplural) so
the text (or plural) field will be queried by the interpreter.

The commands \newglossaryentry and \longnewglossaryentry are the foundation
for all commands that define glossary entries. These commands both require that either the
name or the parent field are set. If the name is omitted, then its value is obtained from the
parent entry’s name. The description must also be provided but may be set to empty.
(Some entry types, such as @index, will set description to empty if that field is missing,
but for other entry types, such as @entry, the description is required and will trigger a
warning if omitted.)

All other entry definition commands, such as \newabbreviationand \glsxtrnewsymbol,
internally use one of those foundation commands.? In the case of \newabbreviation (and
\newacronym), the name field is set by the style using values obtained from the short and/or
long fields. This is information that bib2gls is unaware of and may guess incorrectly when
trying to determine an appropriate value for the name field if it is omitted (which is typically
the case) from abbreviation entry types, such as @abbreviation or @acronym.

The general Centry entry type, uses the same rules as \newglossaryentry:

name If the parent field has been set, then the parent’s name field is used. If the parent’s
name field isn’t set, then the fallback for the parent’s name field is used (which will
depend on the parent’s entry type). If neither the name nor the parent field is set,
then a warning is issued since at least one of those fields must be set for Gentry.

20r the internal command that both \newglossaryentry and \longnewglossaryentry use.

233

5.8 Field Fallbacks

text If the text field is missing, it’s obtained from the name field or the fallback for the
name field, if that hasn’t been set.

plural Ifthe name field has been set then the plural value is obtained by appending \gls-
pluralsuffix to the value of the text field (or the fallback for the text field, if that
hasn’t been set).

If the name field hasn’t been set but the parent field has been set, then the plural is
obtained from the parent’s plural field. If the parent’s plural field hasn’t been set
then the fallback for that value will be used, according to the parent’s entry type.

first The fallback for the first field is obtained from the text field (or the fallback for
the text field, if that hasn’t been set).

firstplural Thefallback forthe firstplural field is obtained by appending \glsplural-
suffix to the value of the first field, if that field has been set, otherwise it’s obtained
from the plural field (or the fallback for the plural field if that isn’t set).

Note that although bib2gls follows the \newglossaryentry rules in order to obtain the
fallback, it doesn’t explicitly set those fields in the .glstex file if they weren’t provided in
the .bib file or set using options such as replicate-fields or assign-fields.

The exception to this is the sort field, which will be obtained from the name field for most
entry types unless overridden by one of the applicable sort fallback options, such as entry
-sort-fallback. Ifthe designated fallback (such as name) is missing, then the fallback value
for that field will be used.

The @index and @indexplural entry types are slightly different. They have their own
rules for obtaining the value of the name field, and will explicitly set it in the .glstex file
via the helper commands \bibglsnewindex and \bibglsnewindexplural.

In the case of @index, if the name field is missing, its value will be obtained from the entry’s
original label. If the sort field is missing, its value is obtained from the name field unless
a different fallback is specified with custom-sort-fallbacks. The remaining fallbacks are
as for Gentry.

It’s more complicated for @indexplural, which has the following fallback rules:

name If the name field is missing, its value is obtained from the entry’s plural field (or the
fallback for the plural field, if that field is missing).

plural If the plural field is missing, its value is obtained by appending \glsplural-
suffix to the value of the text field (or the fallback for the text field, if that field is
missing).

text If the text field is missing, its value is obtained from the entry’s original label.

sort If the sort field is missing, its value is obtained from the name field unless a different
fallback is specified with custom-sort-fallbacks.

234

5.8 Field Fallbacks

The remaining fallbacks are as for Gentry.

The most awkward of all the entry types are, as indicated earlier, the abbreviations where
the field values such as name and text are set by the abbreviation style. Therefore, there are
resource options specifically to identify the most appropriate fallback values for abbrevia-
tions. The default is to use the value of the short field as the fallback for the name, sort and
text fields. If this is inappropriate for your abbreviation style then you will need to use the
options listed below to provide more appropriate fallbacks. These options don’t actually set
the name and text fields in the . glstex file and don’t include any style formatting (such as
font changing commands), which are irrelevant to bib2gls.?

For other entry types, see their description in chapter 4.

abbreviation-name-fallback={field)

The entry types that define abbreviations (such as @abbreviation and @acronym) will, by
default, fallback on the short field if the name field is missing and it’s required for some
reason (for example, with sort-field={name}). If you prefer to fallback on a different
field, then you can use this option to specify the field. For example, abbreviation-name
-fallback={long}. The (field) value must be a known field (not an internal field) but can’t
be the sort field.

Note that the default fallback for the sort field for abbreviations is given by abbreviation
-sort-fallback which is set to short not name by default. So changing the fallback for the
name field won’t have an effect unless the sort fallback is changed to name or sort-field
={name} is used or the name field is referenced in an option such as assign-fields.

Field concatenation isn’t available for this option.

abbreviation-text-fallback={field)

Similar to abbreviation-name-fallback but for the text field. The default fallback is the
short field. Field concatenation isn’t available for this option.

Note that you can’t have both abbreviation-name-fallback={text}and abbreviation
~text-fallback={name} as it would cause an infinite loop.

abbreviation-sort-fallback={field)

The entry types that define abbreviations (such as @abbreviation and @acronym) will, by
default, fallback on the short field if the sort field is missing (assuming sort-field=
{sort}). If you prefer to fallback on a different field, then you can use this option to specify
the field. For example, abbreviation-sort-fallback={long}. Note that if you use sort
—-field={name}, then the fallback field will be given by abbreviation-name-fallback if
the name field is omitted.

The (field) may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s

3The sort field will be set in the . glstex file as it’s useful for debugging, but it’s typically irrelevant.

235

5.8 Field Fallbacks

original label). The (field) may also be a composite in the form (field1)+(field2)+.. which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

Note that missing-sort-fallback and custom-sort-fallbacks override this setting.

The abbreviation-sort-fallback setting is only used when bib2gls tries to access
the sort field for an abbreviation and finds that the field hasn’t been set. This means
that this setting has no effect if you explicitly set the sort field or if you change the
field used for sorting (sort-field).

entry-sort-fallback=(field)

The regular entry types (such as @entry and @dualentry) will, by default, fallback on the
name field if the sort field is missing (assuming sort-field={sort}). If you prefer to
fallback on a different field, then you can use this option to specify the field. Note that
missing-sort-fallback and custom-sort-fallbacks override this setting.

The (field) may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s
original label). The (field) may also be a composite in the form (field1)+(field2)+.. which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

This setting doesn’t affect the index type of entries, such as @index or @indexplural.
This is useful if your glossary contains homographs (terms with the same spelling) which
can’t be distinguished by the sort comparators. For example, suppose my file entries.bib
contains:

O@index{pagelist,
name={page list},
description={a list of individual pages or page ranges}

}
@index{glossary}

@entry{glossarylist,
parent={glossary},
description={list of technical words}

3

@entry{glosscol,
parent={glossary},
description={collection of glosses}

3

Now first consider a document that uses the default settings:

236

5.8 Field Fallbacks

\documentclass{article}
\usepackage [record, subentrycounter,style={treenoname}]{glossaries-extra}
\GlsXtrLoadResources[src={entries}]

\begin{document}
A test document describing \glspl{pagelist} and
\gls{glosscol} (collection) vs \gls{glossarylist} (list).

\printunsrtglossary
\end{document}

The default behaviour for @entry if the sort field is missing is to fallback on the name field. If
the name field is missing (as with glossarylist and glosscol), then the value is obtained
from the name field from the parent entry. The parent entry for these homographs is the
glossary entry, which was defined with @index and doesn’t have the name field. For the
@index entries, if name is missing the value is obtained from the label.

Therefore both glossarylist and glosscol end up with the same sort value: glossary.
This triggers a message in verbose mode (--verbose) which can be found in the transcript
file:

Identical sort values for 'glossarylist' and 'glosscol'
Falling back on ID

So the actual sort values used are “glossarylist” and “glosscol”. This puts the glossarylist
entry before the glosscol entry.
Now suppose a minor modification is made to the document:

\GlsXtrLoadResources
[
src={entries},
entry-sort-fallback={description}
]

This means that when the sort function fails to find the sort field for the terms defined with
@entry, it will fallback on the description field. This doesn’t affect the terms defined with
@index, which still fallback on the name field. This time there’s no message in the transcript
file and the glosscol entry now comes before the glossarylist entry.

The entry-sort-fallback setting is only used when bib2gls tries to access the
sort field for a term defined with @entry and finds that the field hasn’t been set. This
means that this setting has no effect if you explicitly set the sort field or if you change
the field used for sorting (sort-field).

237

5.8 Field Fallbacks

symbol-sort-fallback=(field)

The entry types that define symbols (such as @symbol and @number) will, by default, fallback
on the entry’s original label if the sort field is missing (assuming the default sort-field=
{sort}). If you prefer to fallback on a different field, then you can use this option to specify
the field. For example, symbol-sort-fallback={name}.

The (field) may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s
original label). The (field) may also be a composite in the form (field1)+(field2)+.. which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

Note that missing-sort-fallback and custom-sort-fallbacks override this setting.

The symbol-sort-fallback setting is only used when bib2gls tries to access the
sort field for a symbol and finds that the field hasn’t been set. This means that this
setting has no effect if you explicitly set the sort field or if you change the field used
for sorting (sort-field).

bibtexentry-sort-fallback={field)

The main @bibtexentry entry types will, by default, fallback on the name if the sort field is
missing (assuming the default sort-field={sort}). If you prefer to fallback on a different
field, then you can use this option to specify the field.

The (field) may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s
original label). The (field) may also be a composite in the form (field1)+(field2)+.. which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

Note that missing-sort-fallback and custom-sort-fallbacks override this setting.

The bibtexentry-sort-fallback setting is only used when bib2gls tries to access
the sort field for a main entry defined with @bibtexentry and finds that the field
hasn’t been set. This means that this setting has no effect if you explicitly set the sort
field or if you change the field used for sorting (sort-field).

custom-sort-fallbacks={(key=value list)}

The value should be a key=value list in the form (entrytype)=(field) where (entrytype) is
the original entry type (before being aliased with entry-type-aliases). This will override
any of the sort fallback options listed below for entries whose original entry type matches
(entrytype).

The (field) may be a known field but not an internal field. For obvious reasons, it can’t
be the sort field (since (field) is the fallback a missing sort field). It may also be one of

238

5.8 Field Fallbacks

the keywords: id (for the entry’s label) or original id (for the entry’s original label). The
(field) may also be a composite in the form (field1)+(field2)+.. which indicates that the sort
value should be obtained by concatenating the values of the given fields, where the separator
is given by field-concat-sep.

For example, if the . bib file contains:

@unit{ohm,
name={\si{\ohm}},
description={electrical resistance}

by

Q@constant{pi,
name={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter},
user1={3.14159}
}

@symbol{fx,
name={\ensuremath{f (x)1}},
description={a function of x}

3

Onumber{zero,
name={0},
description={nothing or no quantity}

}
Then the resource options:

entry-type-aliases={unit=symbol, constant=number},
custom-sort-fallbacks={unit=name,constant=userl}

will treat the custom @unit and @constant entries as though they had been defined with
@symbol and @number, respectively, but the fallback for the sort field is different: the ohm
entry will use the name field for the sort fallback (because its original entry type was unit),
the pi entry will use the user1 field for the sort fallback (because its original entry type
was constant) and the fx and zero entries will use the label for the sort fallback (since nei-
ther symbol nor number were identified in custom-sort-fallbacks so the symbol-sort
~-fallback is used).

If an entry hasn’t had its entry type aliased then (entrytype) is its actual entry type. For
example, consider the following definitions:

O@abbreviation{svm,
short={SVM},
long={support vector machine}

239

5.8 Field Fallbacks

+
O@acronym{laser,
short={laser},
long={light amplification by stimulated emission of radiation}

}

Then abbreviation-sort-fallback={short} will make both entries fallback on the short
field (since abbreviation-sort-fallback applies to both @acronymand @abbreviation),
but the option:

custom-sort-fallbacks={abbreviation=long,acronym=short}

will make the entry defined with @abbreviation fallback on the long field and the entry
defined with @acronym will fallback on the short field.
Since the default setting is abbreviation-sort-fallback={short} this only needs to

be:
custom-sort-fallbacks={abbreviation=long}

In this case, the entry defined with @abbreviation (“SVM”) will use the setting given in
custom-sort-fallbacks, but the entry defined with @acronym (“laser”) will use the setting
given by abbreviation-sort-fallback since @acronym hasn’t been identified in custom
-sort-fallbacks.

This option also covers dual entries. For example:

custom-sort-fallbacks={
dualindexnumber=description,
dualindexnumbersecondary=userl

}

Note that the entry type for the dual is in the form (primary entry type)secondary.

The custom-sort-fallbacks setting is only used when bib2gls tries to access the
sort field for an entry (whose original entry type has been identified in this setting)
and finds that the field hasn’t been set. This means that this setting has no effect if you
explicitly set the sort field or if you change the field used for sorting (sort-field).

field-concat-sep=(value)

This option sets the field concatenation separator to (value) used by the sort fallback op-
tions. The default is a space. An empty value indicates no separator. You may use \u(hex)
to indicate a character by its hexadecimal code (see section 1.6). Note that the more complex
field concatenation specification described in section 5.1 isn’t available for this option.

For example, suppose the .bib file contains:

240

5.9 Plurals

@abbreviation{ac,
short={AC},
long={alternating current}

}

@index{acacia}
Then the resource option:

\GlsXtrLoadResources|[
sort={letter-nocasel},
abbreviation-sort-fallback={short+long}

]

will set the ac sort value to “AC alternating current”. That is, the short value concatenated
with the 1ong value using the default space separator. With the letter-nocase sort method,
this will put the ac entry before the acacia entry (because the space character comes before
“a”)‘

If the resource options are changed to:

\GlsXtrLoadResources[
sort={letter-nocase},
field-concat-sep={},
abbreviation-sort-fallback={short+long}

]

This will obtain the sort value for abbreviations from a concatenation of the (short) and
(long) values without a separator. This means that the ac sort value will be “ACalternating
current” and so the ac entry will come after the acacia entry (since “1” comes after “c”).

This setting is only used for the sort fallback options that allow field concatenation (such
as entry-sort-fallback but not missing-sort-fallback).

Note that due to the way that the key=value list parser trims leading and trailing spaces,
you can’t simply do field-concat-sep={ } to indicate a space character as the value will
end up as an empty string. You can instead do field-concat-sep={\string\u20} but
since this is the default value there shouldn’t be much need for it.

Remember that the separator may be replaced with a break point marker depending on
the sort method and break-at setting.

5.9 Plurals

Some languages, such as English, have a general rule that plurals are formed from the sin-
gular with a suffix appended. This isn’t an absolute rule. There are plenty of exceptions (for
example, geese, children, churches, elves, fairies, sheep, mice), so a simplistic approach of
just doing \gls{(label)} [s] will sometimes produce inappropriate results, so the glossaries
package provides a plural key with the corresponding command \glspl.

241

5.9 Plurals

In some cases a plural may not make any sense (for example, if the term is a verb or
symbol), so the plural key is optional, but to make life easier for languages where the
majority of plurals can simply be formed by appending a suffix to the singular, the glossaries
package lets the plural field default to the value of the text field with \glspluralsuffix
appended. This command is defined to be just the letter “s”. This means that the majority of
terms in such languages don’t need to have the plural supplied as well, and you only need
to use it for the exceptions.

For languages that don’t have this general rule, the plural field will always need to be
supplied for nouns.

There are other plural fields, such as firstplural, longplural and shortplural. Again,
if you are using a language that doesn’t have a simple suffix rule, you’ll have to supply the
plural forms if you need them (and if a plural makes sense in the context).

If these fields are omitted, the glossaries package follows these rules:

o If firstplural is missing, then \glspluralsuffix is appended to the first field,
if that field has been supplied. If the first field hasn’t been supplied but the plural
field has been supplied, then the firstplural field defaults to the plural field. If
the plural field hasn’t been supplied, then both the plural and firstplural fields
default to the text field (or name, if no text field) with \glspluralsuffix appended.

o If the longplural field is missing, then \glspluralsuffix is appended to the long
field, if the 1ong field has been supplied.

« If the shortplural field is missing then, with the base glossaries acronym mechanism,
\acrpluralsuffix is appended to the short field.

The last case is different with the glossaries-extra extension package. The shortplural
field defaults to the short field with \abbrvpluralsuffix appended unless overridden by
category attributes. This suffix command is set by the abbreviation styles. This means that
every time an abbreviation style is implemented, \abbrvpluralsuffix is redefined. Most
styles simply define this command as:

\renewcommand*{\abbrvpluralsuffix}{\glsxtrabbrvpluralsuffix}

where \glsxtrabbrvpluralsuffix expands to \glspluralsuffix. The “sc” styles (such
as long-short-sc) use a different definition:

\renewcommand*{\abbrvpluralsuffix}{\protect\glsxtrscsuffix}

This allows the suffix to be reverted back to the upright font, counteracting the affect of the
small-caps font.

This means that if you want to change or strip the suffix used for the plural short form, it’s
usually not sufficient to redefine \abbrvpluralsuffix, as the change will be undone the
next time the style is applied. Instead, for a document-wide solution, you need to redefine
\glsxtrabbrvpluralsuffix. Alternatively you can use the category attributes.

There are two attributes that affect the short plural suffix formation. The first is aposplural
which uses the suffix

242

5.10 Location List Options

"\abbrvpluralsuffix

That is, an apostrophe followed by \abbrvpluralsuffix is appended. The second attribute
is noshortplural which suppresses the suffix and simply sets shortplural to the same as
short.

With bib2gls, if you have some abbreviations where the plural should have a suffix and
some where the plural shouldn’t have a suffix (for example, the document has both English
and French abbreviations) then there are two approaches.

The first approach is to use the category attributes. For example:

\glssetcategoryattribute{french}{noshortplural}
Now just make sure all the French abbreviations are have their category field set to french:
\GlsXtrLoadResources[src={fr-abbrvs},category={french}]

The other approach is to use the options listed below for the given resource set. For ex-
ample:

\GlsXtrLoadResources[src={fr-abbrvs},short-plural-suffix={}]

short-plural-suffix=(value)

Sets the plural suffix for the default shortplural to (value). The (value) may be one of:
+ (suffix): add the shortplural field, if missing, with the given (suffix).
« (empty): add the shortplural field, if missing, with no suffix.
+ use-default: leave it to glossaries-extra to determine the appropriate default.

The default setting is short-plural-suffix={use-default}. If the =(value) part is omit-
ted, then short-plural-suffix={} is assumed.

dual-short-plural-suffix=(_value)

Sets the plural suffix for the default dualshortplural field to (value). As with short
-plural-suffix, the default setting is dual-short-plural-suffix={use-default}. If
the (value) is omitted or empty, the suffix is set to empty.

5.10 Location List Options

The record package option automatically adds two new keys: loclist and location.
These two fields are set by bib2gls from the information supplied in the .aux file (un-
less the option save-locations={false} is used). The location field contains the code
to typeset the formatted location list.

243

5.10 Location List Options

Note that the cross-referencing information provided with the see, seealso and alias
fields is put in the location list. If you only want the cross-reference and not any of the
locations, use save-locations={see} (or similar).

The loclist field has the syntax of an etoolbox internal list and includes every location
(except for the discarded duplicates and ignored records) with no range formations. Any
explicit range markup is stripped from the format information to leave just the ENCAP name,
so you just get the start and end locations added as individual elements but they are still
encapsulated with the associated formatting command. Each item in the list is provided in
one of the following forms:

\glsseeformat [(tag)]{(label list) }{}

for the cross-reference supplied by the see field,
\glsxtruseseealsoformat{{xr list)}

for the cross-reference supplied by the seealso field,
\glsnoidxdisplayloc{(prefix)}{(counter)}{(format)}{(location)}

for standard the internal locations,

\glsxtrdisplaysupploc{(prefix)}{(counter)}{(format)}{(src)}{(location)?
for supplemental (external) locations and

\glsxtrdisplaylocnameref{(prefix)}{(counter)}{(format)}{(location)}{(title)}
{(href) }{(hcounter)}{(file)}

for nameref records. (See section 5.11 for more information about supplemental locations
and --merge-nameref-on for more information about nameref records.)

You can iterate through the 1oclist value using one of etoolbox’s internal list loops (either
by first fetching the list using \glsfieldfetch or through glossaries-extra’s \glsxtrfield-
dolistloop or \glsxtrfieldforlistloop shortcuts).

The (format) is that supplied by the format key when using commands like \gls or
\glsadd (the encapsulator or ENCAP in makeindex parlance). If omitted, the default format
={glsnumberformat} is assumed (unless this default value is changed with \GlsXtrSet-
DefaultNumberFormat. The value of the format key must be the name of a text-block
command without the leading backslash that takes a single argument (the location). The
location is encapsulated by that command. For example,

\gls[format={textbf}]{sample}

will display the corresponding location in bold, but note that this will no longer have a hy-
perlink if you’ve used hyperref. If you want to retain the hyperlink you need the location
encapsulated with \hyperbf instead of \textbf:

\gls[format={hyperbf}]{sample}

244

5.10 Location List Options

The \hyper(xx) set of commands all internally use \glshypernumber which adds the ap-
propriate hyperlink to the location. See Table 6.1 in the glossaries [14] user manual for a list
of all the \hyper(xx) commands.

Ranges can be explicitly formed using the parenthetical syntax format={(} and format=
{(} or format={({csname)} and format={) (csname)} (where (csname) is again the name
of a text-block command without the initial backslash) in the optional argument of com-
mands like \gls or \glsadd. With glossaries-extra v1.50+, you can also use \glsstart-
range and \glsendrange (which is useful if the unbalanced parentheses upset syntax high-
lighting).

These explicit ranges will always form a range, regardless of min-loc-range, unless the
start and end coincide and --collapse-same-location-range is in effect. The explicit
range will be encapsulated with \bibglsrange (unless merge-ranges={true}). (This com-
mand is not used with implicit ranges that are formed by collating consecutive locations.)
The initial marker is stripped from the (format) argument of the location formatting com-
mands, such as \glsnoidxdisplayloc, to allow for easy conversion to the corresponding
text-block command.

Explicit ranges don’t merge with neighbouring locations (unless merge-ranges={true}),
but will absorb any individual locations within the range that doesn’t conflict. (Conflicts,
denoted interlopers, will be moved to the start of the explicit range, regardless of merge
-ranges.) For example, if \gls{sample} is used on page 1, \gls[format={(}]{sample}
is used on page 2, \gls{sample} is used on page 3, and \gls[format={)}]{sample} is
used on page 4, then the location list will be 1, 2-4. The entry on page 3 is absorbed into the
explicit range, but, with the default merge-ranges={false}, the range can’t be expanded to
include page 1. If the entry on page 3 had a different format to the explicit range, for example
\gls[format={textbf}]{sample} then this will cause a warning and the interloper will
be moved before the start of the range so that the location list would then be 1, 3, 2-4.

The merge-ranges={true} option will make explicit ranges behave like implicit ranges,
which allows them to merge with neighbouring ranges. The \bibglsrange command won’t
be used in this case (regardless of whether or not the range was merged with neighbouring
locations). Options such as min-loc-range won’t have an effect on the merged range, but
will still effect implicit ranges that haven’t been merged with an explicit range.

An ignored record identifies a term that needs to be treated as though it has a record for
selection purposes, but the record should not be included in the location list. The special
format format={glsignore’} is provided by the glossaries package for cases where the lo-
cation should be ignored. (The command \glsignore simply ignores its argument.) This
works reasonably well if an entry only has the one location, but if the entry happens to be
indexed again, it can lead to an odd empty gap in the location list with a spurious comma.
If bib2gls encounters a record with this special format, the entry will be selected but the
record will be discarded.

This means that the location list will be empty if the entry was only indexed with the
special ignored format, but if the entry was also indexed with another format then the lo-
cation list won’t include the ignored records. (This format is used by \glsaddallunused
but remember that iterative commands like this don’t work with bib2gls. Instead, just use
selection={all} to select all entries. Those that don’t have records won’t have a location

245

5.10 Location List Options

list.)

For example, suppose you only want main matter locations in the number list, but you
want entries that only appear in the back matter to still appear in the glossary (without a
location list), then you could do:

\backmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

If you also want to drop front matter locations as well:

\frontmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

\mainmatter
\GlsXtrSetDefaultNumberFormat{glsnumberformat}

\backmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

Note that explicit range formations aren’t discarded, so if glsignore is used in a range,
such as:

\glsadd[format={(glsignore}]{sample}

\glsadd[format={)glsignore}]{sample}

then the range will be included in the location list (encapsulated with \glsignore), but this
case would be a rather odd use of this special format and is not recommended.

The record counting commands, such as \rgls, use the special format glstriggerrecord-
format, which bib2gls also treats as an ignored record and the same rules as for glsignore
apply.

The locations are always listed in the order in which they were indexed, (except for the
cross-reference which may be placed at the start or end of the list or omitted). This is different
to xindy and makeindex where you can specify the ordering (such as lower case Roman first,
then digits, etc), but unlike those applications, bib2gls allows any location, although it may
not be able to work out an integer representation. (With xindy, you can define new location
formats, but you need to remember to add the appropriate code to the custom module.)

It’s possible to define a custom glossary style where \glossentry (and the child form
\subglossentry) ignore the final argument (which will be the 1ocation field) and instead
parse the loclist field and re-order the locations or process them in some other way. Re-
member that you can also use \glsnoidxloclist provided by glossaries. For example:

\glsfieldfetch{gls.sample}{loclist}{\loclist}) fetch location list
\glsnoidxloclist{\loclist}), iterate over locations

This uses \glsnoidxloclisthandler as the list’s handler macro, which simply displays
each location separated by \delimN. (See also Iteration Tips and Tricks [16].)
Each regular location is listed in the . aux file in the form:

246

http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml

5.10 Location List Options

\glsxtr@record{(label) }H{(prefix)}{(counter)}{(format)}{(location)}

(See —~-merge-nameref-on for nameref records.) Exact duplicates are discarded. For exam-
ple, if cat is indexed twice on page 1:

\glsxtr@record{cat}{}{page}r{glsnumberformat}{1}
\glsxtrOrecord{cat}{}{page}t{glsnumberformat}{1}

then the second record is discarded. Only the first record is added to the location list.

Partial duplicates, where all arguments match except for (format), may be discarded de-
pending on the value of (format). For example, if page 1 of the document uses \gls{cat}
and \gls [format={hyperbf}]{cat} then the .aux file will contain:

\glsxtr@record{cat}{}{paget{glsnumberformat}{1}
\glsxtr@record{cat}{}{page}r{hyperbf {1}

This is a partial record match. In this case, bib2gls makes the following tests:

« If one of the formats includes an explicit range formation marker, the range takes
precedence.

« If one of the formats is glsnumberformat (as in the above example) or an ignored
record format such as glsignore, that format will be skipped. So in the above example,
the second record will be added to the location list, but not the first. (A message will
only be written to the transcript if the --debug switch is used.) The default gls-
numberformat will take precedence over the ignored record formats (glsignore and
glstriggerrecordformat).

« Ifamapping has been set with the -—map-format switch that mapping will be checked.
+ Otherwise the duplicate record will be discarded with a warning.

The location field is used to store the formatted location list. The code for this list is
generated by bib2gls based on the information provided in the . aux file, the presence of the
see or seealso field and the various settings described in this chapter. When you display the
glossary using \printunsrtglossary, if the location field is present it will be displayed
according to the glossary style (and other factors, such as whether the nonumberlist option
has been used, either as a package option or supplied in the optional argument of \print-
unsrtglossary). For more information on adjusting the formatting see the glossaries [14]
and glossaries-extra [13] user manuals.

save-locations=(value)

This was originally a boolean setting, but as from v3.0 there are additional values.
+ false: don’t save anything in the location field;

+ true: save cross-references and all non-ignored locations in the location field;

247

5.10 Location List Options

« see: only save cross-references (see, seealso and alias) in the location field;

« see not also: only save the see and alias cross-references (not seealso) in the
location field;

« alias only: only save the alias cross-references (not see or seealso)inthe location

field.

By default, the locations will be processed and stored in the location and loclist fields.
However, if you don’t want the location lists (for example, you are using the nonumberlist
option or you are using xindy with a custom location rule), then there’s no need for bib2gls
to process the locations. To switch this function off, just use save-locations={false}.
Note that with this setting, if you’re not additionally using makeindex or xindy, then the
locations won’t be available even if you don’t have the nonumberlist option set.

The boolean nonumberlist key that may be used in \newglossaryentry can also be
used in a .bib file, but in this case it can’t have an empty value. The value must be either
true or false. If true then bib2gls won’t save the location or loclist fields, regardless
of the save-locations resource option.

The nonumberlist key provided by the base glossaries package doesn’t represent a real
field. The value isn’t saved but, if used, it will alter the indexing information that’s written
to the makeindex or xindy file. It’s a little hack to ensure that the location is hidden for a
specific entry when used with makeindex and xindy.

bib2gls will look for this key to determine if the location should be omitted for the given
entry, but it won’t write the key to the .glstex file.

save-loclist=(boolean)

If youwant the locationfield butdon’tneed loclist,youcanuse save-loclist={false}.
This can help to save resources and build time.

save-primary-locations=(value)

A synonym for save-principal-locations.

save-principal-locations=(value)

It’s sometimes useful to identify a principal location with a different format, such as bold or
italic. This helps the reader select which location to try first in the event of a long location list.
However, you may prefer to store the principal locations in a different field to give it a more
prominent position. In order to do this you need to specify the format (or formats) used to
identify principal locations with principal-location-formats and use save-principal
~locations to determine how to deal with these locations.

This option may take one of the following values:

« false: don’t save principal locations (default);

248

5.10 Location List Options

retain: save principal locations in the primarylocations field but don’t remove
from the usual location list;

default format: similar to retain but the format for the principal records in the
location field is converted to the default glsnumberformat ENCAP (the records in
the primarylocations field retain their given format);

start: save principal locations in the primarylocations field and also move to the
start of the usual location list;

remove: save principal locations in the primarylocations field and remove from the
usual location list. You may want to consider using the —-retain-formats switch
with this setting if you don’t want to lose a partial location match (for example, if the
principal location coincides with the start of an explicit range).

The principal locations are copied to the primarylocations field and are either encap-
sulated with \bibglsprimary or can be split into groups, according to principal-loc
—counters.

If youuse save-principal-locations={remove}, the location field will end up empty
if the locations for the associated entry were all identified as principal. If you use save
-principal-locations={start}, all principal locations will be moved to the start of the
location list stored in the 1ocation field, but there will be no additional markup (other than
the given format) to identify them. If you need additional markup, then use save-principal
~locations={remove} and adjust the location list format to insert the principal locations
at the start. This can be done by modifying the glossary style.

For example, the bookindex style inserts \glsxtrbookindexprelocation before the lo-
cation, so you could redefine this:

\renewcommand*{\glsxtrbookindexprelocation}[1]{}
\glsxtrifhasfield{primarylocations}{#1}J,

{

Y

\glsxtrprelocation
\glscurrentfieldvalue
\glsxtrifhasfield{location}{#1}{; }{}%

{}

\glsxtrprelocation

}

(Note that if 1loc-prefix isused, the prefix will be in the 1ocation field and so will come af-
ter the principal locations in the above example. Similarly for cross-references unless they’ve
been omitted.)

You can switch from using the location field to the primarylocations field by locally
changing \GlsXtrLocationField:

\printunsrtglossary*{/

249

5.10 Location List Options

\renewcommand{\GlsXtrLocationField}{primarylocations}/

3

Remember that the handler used by \printunsrtglossary will fallback on the loclist
field if the field identified by \GlsXtrLocationField is missing or empty. You may want
to consider using save-loclist={false} to prevent this.

primary-location-formats=(list)

A synonym for principal-location-formats.

principal-location-formats=(list)

This option will automatically set save-principal-locations={retain} unless it has al-
ready been changed from the default save-principal-locations={false} setting. The
argument should be a comma-separated list of formats. If a record’s format is contained in
this list then it will be considered a principal location and it will be included in the associated
entry’s primarylocations field.

For example, suppose the file entries.bib contains:

Qentry{bird,
name={bird},
description={feathered animall}
}
Q@entry{waterfowl,
name={waterfowl},
description={any bird that lives in or about water}
}
Q@entry{zebra,
name={zebral,
description={striped African horse}
}
Qentry{parrot,
name={parrot},
description={mainly tropical bird with bright plumage}
}

and the document test . tex contains:

\documentclass{report}

\usepackage [colorlinks] {hyperref}
\usepackage [record,
postpunc={dot},

nostyles,

250

5.10 Location List Options

stylemods={tree,bookindex},
style={bookindex}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},
principal-location-formats={hyperbf,hyperemph},
save-principal-locations={remove}

]

\renewcommand*{\glsxtrbookindexprelocation}[1]{)

\glsxtrifhasfield{primarylocations}{#1}%

{7
\glsxtrprelocation
\glscurrentfieldvalue
\glsxtrifhasfield{location}{#1}{;}H}%

3}

{}Y

\glsxtrprelocation

}

\glsxtrnewglslike [format={hyperbf}]{}\primary}{\primarypl}{\Primary}
{\Primarypl}

\begin{document}
\chapter{Sample}
\Primary{waterfowl}, \gls{bird} and \gls{zebra}.

\chapter{Another Sample}
\Gls{waterfowl}, \primary{bird} and \gls{zebra}.

\chapter{Yet Another Sample}
\Gls{waterfowl}, \gls{bird} and \primary{zebra}.

\chapter{Yet Another Sample Again}
\Gls{waterfowl}, \gls{bird}, \primarypl{parrot} and \gls{zebra}.

\printunsrtglossary*[style={tree},nonumberlist]{’
\renewcommand*{\glsextrapostnamehook} [1]{\glsadd [format={hyperemph}]
{#1}}7

}

\printunsrtglossary[title={Index},target={falsel}]
\end{document}

251

5.10 Location List Options

The principal-location-formats={hyperbf, hyperemph} setting in the above indi-
cates that locations encapsulated with \hyperbf and \hyperemph are principal records. In
this case, the bold format is used to indicate the principal location in the main document text
and the emphasized format is used to indicate the location in the main glossary.

The principal records are removed from the location field due to the save-principal
~locations={remove} setting. This can lead to a ragged location list. The option save
—principal-locations={default format} canallow the principallocation tobe absorbed
into a range.

The main glossary records are added through the category-independent post-name hook
with \glsadd. This won’t be implemented until the entries are actually defined as the page
number can’t be determined until the glossary can be displayed. This means that the docu-
ment build requires an extra bib2gls and KIgX run:

pdflatex test
bib2gls --group test
pdflatex test
bib2gls --group test
pdflatex test

For consistency, I've used \glsxtrnewglslike to provide commands used to indicate a
principal reference in the text. This means that if I decide to change the optional arguments
used for principal references I only need to edit one line. For example, I might want to change
the default counter:

\glsxtrnewglslike [format={hyperbf}, counter={chapter}]{}{\primary}
{\primarypl}{\Primary}{\Primarypl}

Here’s another example that only has one principal format (hyperrm) that’s indexed through
the use of \G1lsXtrAutoAddOnFormat, which sets up a hook that automatically inserts:

\glsadd[counter={chapter},format={hyperrm}]{(label)}

on each instance of \gls [format={primaryfmt}]{(label)} (or similar). This means that the
entry is indexed twice when this particular format is used: first with the hyperrm format and
chapter counter (from the \glsadd command in the hook), and then with the primaryfmt
format and the default counter (as per normal behaviour):

\documentclass{report}

\usepackage [colorlinks] {hyperref}
\usepackage [

record={nameref},

postpunc={dot},

nostyles,
stylemods={tree,bookindex},
style={bookindex}]{glossaries-extra}

252

5.10 Location List Options

\GlsXtrLoadResources|[
src={topics},
principal-location-formats={hyperrm},
save-principal-locations={remove},
save-loclist={false}

\newcommand{\primaryfmt} [1]{\hyperbf{#1}}
\GlsXtrAutoAddOnFormat{primaryfmt}{counter={chapter},format={hyperrm}}

\glsxtrnewglslike [format={primaryfmt}]{}{\primary}{\primarypl}{\Primary}
{\Primarypl}

\begin{document}
\chapter{Sample}
\Primary{waterfowl}, \gls{bird} and \gls{zebra}.

\chapter{Another Sample}
\Gls{waterfowl}, \primary{bird} and \gls{zebra}.

\chapter{Yet Another Sample}
\Gls{waterfowl}, \gls{bird} and \primary{zebra}.

\chapter{Yet Another Sample Again}
\Gls{waterfowl}, \gls{bird}, \primarypl{parrot} and \gls{zebra}.

\printunsrtglossary*[style={tree}, title={Summary}]1{’
\renewcommand*{\glsextrapostnamehook}[1]{\glsadd [format={hyperemph}]
{#1}}

\renewcommand{\GlsXtrLocationField}{primarylocations})

}

\printunsrtglossary[title={Index},target={falsel}]
\end{document?}

Note that in this case, from bib2gls’ point of view, the principal format is hyperrm not
primaryfmt. This picks out the records created with the automated \glsadd, which have the
counter set to chapter. The first glossary (with the title “Summary”) switches the location
field to primarylocations so that only the principal records are listed. Since record=
{nameref} has been used this means that the chapter title is shown rather than the chapter
number.

The second glossary (“Index”) shows the location lists that only have the page counter (be-

253

5.10 Location List Options

cause the automated \glsadd records with the chapter counter have been removed because
they were identified as principal records). These just show the page number as that’s the
default display with record={nameref} for records with the page counter.

An alternative to \GlsXtrAutoAddOnFormat would be to simply define the custom com-
mands as follows:

\newcommand{\primary}[2] []1{’
\glsadd[counter={chapter},format={hyperrm}]{#2}J
\gls[format={primaryfmt},#1]{#23}J

}

\newcommand{\primarypl}[2] [1{7
\glsadd[counter={chapter},format={hyperrm}]{#2}J
\glspl[format={primaryfmt},#1]{#2}J

}

\newcommand{\Primary} [2] [1{’
\glsadd[counter={chapter},format={hyperrm}]{#2}J
\Gls [format={primaryfmt},#1]1{#2}/

}

\newcommand{\Primarypl}[2] [1{7
\glsadd[counter={chapter},format={hyperrm}]{#2}J
\Glspl[format={primaryfmt}, #1]{#2}/

}

This is more useful if you want to simply omit the format={primaryfmt} option (just re-
move it from the above four definitions), which makes it easier to merge the locations into
ranges in the index.

primary-loc-counters=(value)

A synonym for principal-loc-counters.

principal-loc-counters=(value)

This option determines whether the principal locations should be split into groups according
to the location counter. The value may be one or:

« combine: don’t split into groups (default);
+ match: match the loc-counters setting;
« split: split into groups regardless of the 1oc-counters setting.

Withprincipal-loc-counters={combine} or with principal-loc-counters={match}
and the default loc-counters={as use} settings, no groups will be formed and the prin-
cipal locations will be encapsulated with \bibglsprimary. Otherwise, the locations will be

254

5.10 Location List Options

split into groups according to the counter and each group will be encapsulated with \bib-
glsprimarylocationgroup and separated with \bibglsprimarylocationgroupsep.
For example, suppose the file topics.bib contains the following entry:

@entry{zebra,
name={zebral,
description={striped African horse}

}

The document sets up a principal location format identified by the custom command \primaryfmt:
\newcommand{\primaryfmt} [1]{\hyperbf{#1}}

The \GlsXtrAutoAddOnFormat command is used to automatically record an entry with the
chapter counter (using \glsadd) every time the entry is recorded with the principal location
format:

\GlsXtrAutoAddOnFormat{primaryfmt}{counter=chapter,format=primaryfmt}
This means that, for example,
\gls[format=primaryfmt]{(zebra)}
will also first do:
\glsadd[counter=chapter,format=primaryfmt]{(zebra)}
If resource set is loaded with:

\GlsXtrLoadResources [src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain}

]

then both the location field and the primarylocations field will include both the page
and chapter records mixed together. The primarylocations field will have the locations
encapsulated with \bibglsprimary.

With

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={split}

]

the primarylocations field will have the locations split into two groups, each encapsulated
with \bibglsprimarylocationgroup. The location field will have the chapter and page
locations intermingled.

With

255

5.10 Location List Options

\GlsXtrLoadResources [src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={split},
loc-counters={page}

]

The primarylocations field will be the same as before, but the 1ocation field will only
have the page locations.
Whereas with

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={match},
loc-counters={page}

]

Both the primarylocations field and the 1ocation field will only have the page locations.
The order of the groups depends on whether split or match is used. With primary-loc
-counters={match} the counter group order will match loc-counters. Whereas with
primary-loc-counters={split} the counter group order will be determined by the order
of records.
So in the case of the above document where the chapter record is automatically added
before the page record (where the format is primaryfmt) then with:

\GlsXtrLoadResources [src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={match},
loc-counters={page,chapter}

]

then both the 1ocation field and the primarylocations field will have the page group first,
followed by the chapter group. Whereas with:

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={skip},
loc-counters={page, chapter}

]

then the primarylocations field will have the chapter group first, followed by the page
group.

256

5.10 Location List Options

merge-ranges={boolean)

This boolean option determines whether or not explicit ranges should merge with neighbour-
ing locations on either side of the range. The default setting is merge-ranges={false}.

Note that \bibglsrange won’t be used withmerge-ranges={true}, regardless of whether
or not the range was merged with neighbouring locations. Options such asmin-loc-range,
suffixF and suffixFF won’t have an effect on the merged range, but will still effect implicit
ranges that haven’t been merged with an explicit range.

Regardless of the value of this option, interlopers will still be moved to the start of the
range and encapsulated with \bibglsinterloper.

min-loc-range=(value)

By default, three or more consecutive locations (loc-1), (loc-2), ..., (loc-n) are compressed into
the range (loc-1)\delimR (loc-n) (an implicit range). Otherwise the locations are separated
by \bibglsdelimN or \bibglslastDelimN. As mentioned above, these aren’t merged with
explicit range formations unless merge-ranges={true}.

You can change how many consecutive locations are need to form an implicit range with
the min-loc-range setting where (value) is either none (don’t form ranges) or an inte-
ger greater than one indicating how many consecutive locations should be converted into a
range.

bib2gls determines if one location {(prefix-2)}{ {counter-2) }{ (format-2)}{(location-2)}
is one unit more than another location {{prefix-1)}{(counter-1)}{(format-1)}{(location-1)}
according to the following:

1. If (prefix-1) is not equal to (prefix-2) or (counter-1) is not equal to (counter-2) or
(format-1) is not equal to (format-2), then the locations aren’t considered consecu-
tive.

2. If either (location-1) or (location-2) are empty, then the locations aren’t considered
consecutive.

3. If both (location-1) and (location-2) match the pattern (line break for clarity only)*

(.*?) (7:\\protect\s*) ?(\\ [\p{javaAlphabetic}@]+) \s*\{([\p{javaDigit}
\p{javaAlphabetic}]+)\}

then:

« if the control sequence matched by group 2 isn’t the same for both locations, the
locations aren’t considered consecutive;

“The Java class \p{javaDigit} used in the regular expression will match any digits in the Unicode “Number,
Decimal Digit” category not just the digits in the Basic Latin set. Similarly \p{javaAlphabetic} will also
match alphabetic characters outside the Basic Latin set.

257

5.10 Location List Options

« if the argument of the control sequence (group 3) is the same for both locations,
then the test is retried with (location-1) set to group 1 of the first pattern match
and (location-2) set to group 1 of the second pattern match;

« otherwise the test is retried with (location-1) set to group 3 of the first pattern
match and (location-2) set to group 3 of the second pattern match.

4. If both (location-1) and (location-2) match the pattern
(.*?7) (["\p{javaDigit}]?) (\p{javaDigit}+)

then:
a) if group 3 of both pattern matches are equal then:
i. if group 3 isn’t zero, the locations aren’t considered consecutive;

ii. if the separators (group 2) are different the test is retried with (location-1)
set to the concatenation of the first two groups (group-1)(group-2) of the
first pattern match and (location-2) set to the concatenation of the first two
groups (group-1){group-2) of the second pattern match;

iii. if the separators (group 2) are the same the test is retried with (location-1)
set to the first group (group-1) of the first pattern match and (location-2) set
to the first group (group-1) of the second pattern match.

b) If (group-1) of the first pattern match (of (location-1)) doesn’t equal (group-1) of
the second pattern match (of (location-2)) or (group-2) of the first pattern match
(of (location-1)) doesn’t equal (group-2) of the second pattern match (of (location-
2)) then the locations aren’t considered consecutive;

¢) If0 < ly—1; < dwherel; is (group 3) of the second pattern match, [; is (group 3)
of the first pattern match and d is the value of max-1loc-diff then the locations
are consecutive otherwise they’re not consecutive.

5. The next pattern matches for (prefix)(sep)(n) where (n) is a lower case Roman nu-
meral, which is converted to a decimal value and the test is performed in the same
way as the above decimal test.

6. The next pattern matches for (prefix)(sep)(n) where (n) is an upper case Roman nu-
meral, which is converted to a decimal value and the test is performed in the same way
as the above decimal test.

7. The next pattern matches for (prefix)(sep)(c) where (c) is either a lower case letter
from a to z or an upper case letter from A to Z. The character is converted to its code
point and the test is performed in the same way as the decimal pattern above.

8. If none of the above, the location aren’t considered consecutive.

Examples:

258

5.10 Location List Options

1. \glsxtr@record{gls.sample}{}{page}t{glsnumberformat}{1}
\glsxtr@record{gls.sample}{}{page}t{glsnumberformat}{2}

These records are consecutive. The prefix, counter and format are identical (so the test
passes step 1), the locations match the decimal pattern and the test in step 4c passes.

2. \glsxtr@record{gls.sample}{}{page}r{glsnumberformat}{1}
\glsxtrOrecord{gls.sample}{}{paget{textbf+{2}

These records aren’t consecutive since the formats are different.

3. \glsxtr@record{gls.sample}{}{page}r{glsnumberformat}{A.i}
\glsxtr@record{gls.sample}{}{page}t{glsnumberformat}{A.ii}

These records are consecutive. The prefix, counter and format are identical (so it passes
step 1). The locations match the lower case Roman numeral pattern, where A is con-
sidered a prefix and the dot is consider a separator. The Roman numerals i and ii are
converted to decimal and the test is retried with the locations set to 1 and 2, respec-
tively. This now passes the decimal pattern test (step 4c).

4. \glsxtr@record{gls.sample}{}{paget{glsnumberformat}{i.A}
\glsxtr@record{gls.sample}{}{page}t{glsnumberformat}{ii.A}

These records aren’t consecutive. They match the alpha pattern. The first location is
considered to consist of the prefix i, the separator . (dot) and the number given by the
character code of A. The second location is considered to consist of the prefix ii, the
separator . (dot) and the number given by the character code of A.

The test fails because the numbers are equal and the prefixes are different.

5. \glsxtrOrecord{gls.sample}{}{page}t{glsnumberformat}{1.0}
\glsxtr@record{gls.sample}{}{page}r{glsnumberformat}{2.0%}

These records are consecutive. They match the decimal pattern, and then step 4a fol-
lowed by step 4(a)iii. The .0 part is discarded and the test is retried with the first
location set to 1 and the second location set to 2.

6. \glsxtrOrecord{gls.sample}{}{page}r{glsnumberformat}{1.1}
\glsxtr@record{gls.sample}{}{page}t{glsnumberformat}{2.1}

These records aren’t consecutive as the test branches off into step 4(a)i.

7. \glsxtrOrecord{gls.sample}{}{page}t{glsnumberformat}{\@alph{1}}
\glsxtrOrecord{gls.sample}{}{page}{glsnumberformat}{\@alph{2}}

These records are consecutive. The locations match the control sequence pattern. The
control sequences are the same, so the test is retried with the first location set to 1 and
the second location set to 2.

In this example, the location has been written to the file as \@alph{(number)} instead
of fully expanding according to the normal behaviour of \alph{(counter)}. (Note
that \GlsXtrLoadResources changes the category code of @ to allow for internal
commands in locations.) This unusual case is for illustrative purposes.

259

5.10 Location List Options

max-loc-diff=(value)

This setting is used to determine whether two locations are considered consecutive. The
value must be an integer greater than or equal to 1. (The default is 1.)

For two locations, (location-1) and (location-2), that have numeric values n; and ny (and
identical prefix, counter and format), then the sequence (location-1), (location-2) is consid-
ered consecutive if

0 < ng —ny < (max-loc-diff)

The default value of 1 means that (location-2) immediately follows (location-1) if ny = nq+1.

For example, if (location-1) is “B” and (location-2) is “C”, then n; = 66 and ny = 67. Since
ny = 67 = 66 + 1 = ny + 1 then (location-2) immediately follows (location-1).

This is used in the implicit range formations within the location lists (as described in the
above section). So, for example, the list “1, 2, 3, 5, 7, 8, 10, 11, 12, 58, 59, 61” becomes “1-3, 5,
7, 8,10-12, 58, 59, 617

The automatically indexing of commands like \gls means that the location lists can be-
come long and ragged. You could deal with this by switching off the automatic indexing and
only explicitly index pertinent use or you can adjust the value of max-loc-diff so that a
range can be formed even if there are one or two gaps in it. By default, any ranges that have
skipped gaps in this manner will be followed by \bibglspassim. The default definition of
this command is obtained from the resource file. For English, this is | ;passim (space followed
by “passim”).

So with the above set of locations, if max-loc-diff={2} then the list becomes “1-12
passim, 58—-61 passim” which now highlights that there are two blocks within the document
related to that term.

suf fixF=(value)

If set, an implicit range consisting of two consecutive locations (loc-1) and (loc-2) will be
displayed in the location list as (loc-1)(value). This option doesn’t affect explicit ranges,
even with merge-ranges={true}.

Note that suffixF={} sets the suffix to the empty string. To remove the suffix formation
use suffixF={none}.

The default is suffixF={none}.

suf fixFF=(value)

If set, an implicit range consisting of three or more consecutive locations (loc-1) and (loc-
2) will be displayed in the location list as (loc-1)(value). This option doesn’t affect explicit
ranges, even with merge-ranges={true}.

Note that suffixFF={} sets the suffix to the empty string. To remove the suffix formation
use suffixFF={none}.

The default is suffixFF={none}.

260

5.10 Location List Options

compact-ranges=(value)

The (value) may be an integer (n) or false (equivalent to compact-ranges={0}) or true
(equivalent to compact-ranges={3}). If no (value) is specified, true is assumed.

This setting allows location ranges such as 184-189 to appear more compactly as 184-9.
The end location is encapsulated in the command \bibglscompact, so the range would
actually become:

184\delimR\bibglscompact{digit}{18}{9}

If the location is in the form (cs){(loc)} (where (cs) is a command) then \bibglscompact
will be inside the argument. For example, if the range would normally be:

\custom{184}\delimR\custom{189}
then it would become:
\custom{184}\delimR\custom{\bibglscompact{digit}{18}{9}}

The numerical value given in compact-ranges={(n)} indicates that compaction should only
occur if the actual location consists of at least (n) characters, for (n) > 2. Any value of (n)
less than 2 will switch off compaction.

For example, 189 consists of 3 characters, so it will be compacted with compact-ranges=
{3} but not with compact-ranges={4}. Whereas \custom{89} would only be compacted
with compact-ranges={2} because 89 only consists of 2 characters.

The compaction isn’t limited to decimal digits but it will only occur if both the start and
end location have the same number of characters. For example, xvi-xviii can’t be compacted
because the start consists of three characters and the end consists of five characters, whereas
xxv—-xxx can be compacted to xxv-x, which may look a little strange. In this case, you may
want to consider changing the definition of \bibglscompact so that it only performs the
compaction for digits.

see=(value)

If an entry has a see field, this can be placed before or after the location list, or completely
omitted (but the value will still be available in the see field for use with \glsxtrusesee).
The required (value) must be one of:

+ omit: omit the see reference from the location list.
« before: place the see reference before the location list.
« after: place the see reference after the location list (default).

The separator between the location list and the cross-reference is provided by \bibgls-
seesep. This separator is omitted if the location list is empty. The cross-reference is written
to the location field using \bibglsusesee{(label)}.

261

5.10 Location List Options

seealso=(value)

This is like see but governs the location of the cross-references provided by the seealso
field. You need at least v1.16 of glossaries-extra for this option. The values are the same as
for see but the separator is given by \bibglsseealsosep. The cross-reference is written to
the location field using \bibglsuseseealso{(label)}.

alias=(value)

This is like see but governs the location of the cross-references provided by the alias field.
The separator is given by \bibglsaliassep. The cross-reference is written to the location
field using \bibglsusealias{(label)}.

alias-loc=(value)

If an entry has an alias field, the location list may be retained or omitted or transferred to
the target entry. The required (value) must be one of:

« keep: keep the location list;
« transfer: transfer the location list;
« omit: omit the location list.

The default setting is alias-loc={transfer}. In all cases, the target entry will be added
to the see field of the entry with the alias field, unless it already has a see field (in which
case the see value is left unchanged).

Note that with alias-loc={transfer}, both the aliased entry and the target entry must
be in the same resource set. (That is, both entries have been selected by the same instance of
\GlsXtrLoadResources.) If you have glossaries-extra version 1.12, you may need to redefine
\glsxtrsetaliasnoindex to do nothing if the location lists aren’t showing correctly with
aliased entries. (This was corrected in version 1.13.)

loc-prefix=(value)
The loc-prefix setting indicates that the location lists should begin with \bibglsloc-
prefix{(n)}. The (value) may be one of the following:

« false: don’tinsert \bibglslocprefix{(n)} at the start of the location lists (default).

« {(prefix-1)} ,{(prefix-2)},..,{(prefix-n)}: insert \bibglslocprefix{(n)} (where (n)
is the number of locations in the list) at the start of each location list and the definition
of \bibglslocprefix will have an \ifcase condition:

\providecommand{\bibglslocprefix}[1]{)
\ifcase#l
\or (prefix-1)\bibglspostlocprefix

262

5.10 Location List Options

\or (prefix-2)\bibglspostlocprefix

\else (prefix-n)\bibglspostlocprefix
\fi
}

« comma: equivalent to loc-prefix={{, }} but avoids confusion with the list syntax.
That is, the prefix is a comma followed by a space for non-empty location lists.

« list: equivalent to loc-prefix={\pagelistname }.

« true: equivalent to loc-prefix={\bibglspagename, \bibglspagesname}, where
the definitions of \bibglspagename and \bibglspagesname are obtained from the
tag.page and tag.pages entries in bib2gls’s language resource file. This setting
works best if the document’s language matches the language file. However, you can
redefine these commands within the document’s language hooks or in the glossary
preamble.

If (value) is omitted, true is assumed. The definition will be placed in the .glstex file
according to loc-prefix-def.
For example:

\GlsXtrLoadResources[type={main},loc-prefix-def={individual},src=
{entriesi},loc-prefix={false}]
\GlsXtrLoadResources[type={main},loc-prefix-def={individual},src=
{entries2},loc-prefix]

\GlsXtrLoadResources [type={symbols},src={entries3},loc-prefix={p.,pp.}]

This works since the conflicting loc-prefix={p.,pp.} and loc-prefix={true} are in
different glossaries (assigned through the type key). The entries fetched from entries1.bib
won’t have a location prefix. The entries fetched from entries2.bib will have the location
prefix obtained from the language resource file. The entries fetched from entries3.bib will
have the location prefix “p.” or “pp.” (Note that using the type option isn’t the same as setting
the type field for each entry in the .bib file.)

If the type option isn’t used:

\GlsXtrLoadResources[src={entriesl},loc-prefix={falsel}]
\GlsXtrLoadResources[src={entries2},loc-prefix]
\GlsXtrLoadResources[src={entries3},loc-prefix={p.,pp.1}]

then loc-prefix={true} takes precedence over loc-prefix={p.,pp.} (since it was used
first). The entries fetched from entriesl.bib still won’t have a location prefix, but the
entries fetched from both entries2.bib and entries3.bib have the location prefixes ob-
tained from the language resource file.

Note that if you identify some glossaries but not others (for example, you have dual entries
in separate glossaries but only use type and not dual-type), then you will need to use loc
-prefix-def={global} or loc-prefix-def={local}.

263

5.10 Location List Options

loc-prefix-def=(value)

This determines how the location prefix identified by loc-prefix is written to the .glstex
file. The value may be one of:

« global the definition is globally defined using \providecommand;

+ local the definition is locally defined using \providecommand in the general glossary
preamble (\glossarypreamble);

« individual the definition is locally defined using \providecommand in the glossary
preamble of each type that has been identified in the current resource set, using options
like type and dual-type (\apptoglossarypreamble).

The default is loc-prefix-def={individual}. Note that this can lead to an undefined
control sequence error if locations appear in a glossary that hasn’t been detected by the
resource set.

loc-suffix=(value)

This is similar to loc-prefix but there are some subtle differences. In this case (value)
may either be the keyword false (in which case the location suffix is omitted) or a comma-
separated list (suffix-0) , (suffix-1) ..., (suffix-n) where (suffix-0) is the suffix to use when the
location list only has a cross-reference with no locations, (suffix-1) is the suffix to use when
the location list has one location (optionally with a cross-reference), and so on. The final
(suffix-n) in the list is the suffix when the location list has (n) or more locations (optionally
with a cross-reference).

This option will append \bibglslocsuffix{(n)} tolocation lists that either have a cross-
reference or have at least one location. Unlike \bibglslocprefix, this command isn’t used
when the location list is completely empty. Also, unlike \bibglslocprefix, this suffix
command doesn’t have an equivalent to \bibglspostlocprefix.

If (value) omitted, loc-suffix={\0@.} is assumed. The defaultis loc-suffix={false}.

The way the definition is written to the .glstex file is determined by loc-suffix-def.
Note that if you identify some glossaries but not others (for example, you have dual entries
in separate glossaries but only use type and not dual-type), then you will need to use
loc-suffix-def={global} or loc-suffix-def={local}.

loc-suffix-def=(value)

This determines how the location suffix identified by 1oc-suffix is written to the .glstex
file. The value may be one of:

+ global the definition is globally defined using \providecommand;

+ local the definition is locally defined using \providecommand in the general glossary
preamble (\glossarypreamble);

264

5.10 Location List Options

+ individual the definition is locally defined using \providecommand in the glossary
preamble of each type that has been identified in the current resource set, using options
like type and dual-type (\apptoglossarypreamble).

The default is loc-suffix-def={individual}. Note that this can lead to an undefined
control sequence error if locations appear in a glossary that hasn’t been detected by the
resource set.

loc-counters=(list)

Commands like \gls allow you to select a different counter to use for the location for that
specific instance (overriding the default counter for the entry’s glossary type). This is done
with the counter option. For example, consider the following document:

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [record,style={tree}]{glossaries-extra}

\GlsXtrLoadResources|[
src={entries}), data in entries.bib

]

\begin{document}

\gls{pi}.

\begin{equation}
\gls[counter={equation}]{pi}
\end{equation}
\begin{equation}
\gls[counter={equation}]{pi}
\end{equation}

\newpage

\begin{equation}
\gls[counter={equation}]{pi}
\end{equation}

\newpage
\gls{pi}.

\newpage
\gls{pi}.

\newpage

265

5.10 Location List Options

\gls{pi}.

\newpage
\printunsrtglossaries
\end{document}

This results in the location list “1, 1-3, 3-5”. This looks a little odd and it may seem as though
the implicit range formation hasn’t worked, but the locations are actually: page 1, equation 1,
equation 2, equation 3, page 3, page 4 and page 5. Ranges can’t be formed across different
counters.

The loc-counters={(list)} option instructs bib2gls to group the locations according to
the counters given in the comma-separated (list). If a location has a counter that’s not listed
in (list), then the location is discarded.

For example:

\GlsXtrLoadResources[
loc-counters={equation,pagel},’ group locations by counter
src={entries}), data in entries.bib

]

This will first list the locations for the equation counter and then the locations for the page
counter. Each group of locations is encapsulated within the command \bibglslocation-
group{(n)K(counter){(locations)}. The groups are separated by \bibglslocationgroup-
sep.

The (list) value must be non-empty. Use loc-counters={as-use} to restore the default
behaviour, where the locations are listed in the document order of use, or save-locations
={false} to omit the location lists. Note that you can’t form counter groups from supple-
mental location lists.

save-index-counter=(value)
This option requires at least version 1.29 of glossaries-extra. The (value) may be one of:

« false: don’t create the indexcounter field (default);
« true: create the indexcounter field with the value set to the first wrglossary location;

« (encap): create the indexcounter field with the value set to the first wrglossary loca-
tion where the format is (encap).

This setting will have no effect if the indexcounter package option hasn’t been used. In the
case where the (value) is (encap), make sure that this format takes priority in the location
precedence rules (--map-format). If the location with that (encap) format value is discarded
then it can’t be saved.

The indexcounter package option (glossaries-extra v1.29+) creates a new counter called
wrglossary that’s incremented every time a term is indexed (recorded), except for cross-
references such as \glssee. The increment is performed using \refstepcounter and is

266

5.10 Location List Options

followed by \label{wrglossary.(n)} where (n) is the value of the wrglossary counter.
This option is intended for use with the hyperref package to allow locations to link back to
the particular part of the page where the term was referenced rather than to the top of the

page.

Take care not to confuse this with the indexed special internal field introduced in
glossaries-extra v1.49+. This is incremented on a per-entry basis and does not have an
associated counter.

The indexcounter package option also automatically implements the option counter=
{wrglossary}, which means that each instance of \gls{(id)} writes the label information
to the . aux file:

\newlabel{wrglossary. (n)}{{(n)}{(page)}{}{wrglossary. (n)}{}}
(where (page) is the page number) followed by the record:
\glsxtrorecord{(id)HI{wrglossary}{glsnumberformat}{(n)}

The location here is actually the value of the wrglossary counter not the page number, but
bib2gls can pick up the corresponding (page) from the \newlabel command. It then re-
places the record’s location (n) with:

\glsxtr@wrglossarylocation{(n)}{(page)}

(but it only does this for records that have the wrglossary counter).

The glossaries-extra package (v1.29+) adjusts the definition of \glshypernumber (which
is internally used by \glsnumberformat, \hyperbf etc when hyperref has been loaded) so
that if the counter is wrglossary then \pageref is used instead of \hyperlink. This means
that the page number is displayed in the location list but it links back to the place where the
corresponding \label occurred.

This method works partially with makeindex and xindy but from their point of view the
location is the value of the wrglossary counter, which interferes with their ability to merge
duplicate page numbers and form ranges. Since bib2gls is designed specifically to work
with glossaries-extra, it’s aware of this special counter and will merge and collate the locations
according to the corresponding page number instead.

With the default --merge-wrglossary-records switch, if a term has multiple wrglossary
records for a given page they will be merged. The reference link will be the dominant record
for that page.

The save-index-counter option allows you to save the first of the wrglossary locations
for a given entry or the first instance of a specific format of the wrglossary locations for a
given entry. This location is stored in the indexcounter internal field using:

\GlsXtrSetField{(id)}{indexcounter}{\glsxtr@urglossarylocation{(n)}
{{page)}}

267

5.10 Location List Options

Since \glsxtr@wrglossarylocation simply expands to its first argument, the correspond-
ing label can be obtained with:

wrglossary.\glsxtr@urglossarylocation{(n)}{(page)}
For convenience, glossaries—extra-bib2gls provides:
\GlsXtrIndexCounterLink{(text)}{(label)}

which will do:

\hyperref [wrglossary. (value)] {(text)}

where (value) is the value of the indexcounter field if it has been set. If the indexcounter
field hasn’t been set (or if hyperref hasn’t been loaded) then just (text) is done.

This provides a convenient way of encapsulating the name in the glossary so that it links
back to the first wrglossary entry or the first format={(encap)} wrglossary entry. This en-
capsulation can be done by providing a new glossary style or more simply by redefining
\glsnamefont:

\renewcommand{\glsnamefont}[1]{%
\GlsXtrIndexCounterLink{#1}{\glscurrententrylabel}}

Here’s a complete example:

\documentclass{article}

\usepackage{lipsum}), dummy filler text

\usepackage [colorlinks] {hyperref}

\usepackage [record,indexcounter]{glossaries-extra}
\newcommand{\primary}[1]{\hyperbf{#1}}
\GlsXtrLoadResources[

src={entries},’ terms defined in entries.bib
save-index-counter={primary}

]

\renewcommand{\glsnamefont}[1]{%
\GlsXtrIndexCounterLink{#1}{\glscurrententrylabel}}

\begin{document}
A \gls{sample}. \lipsum*[1] A \gls{duck}.

An equation:
\begin{equation}

268

5.11 Supplemental Locations

\gls[counter={equation}]{pi}
\end{equation}

\lipsum[2]

Another \gls[format={primary}]{sample}. \lipsum*[3] Another
\gls{duck}.

\gls{pi}. \lipsum[4]

A \gls{sample}. \lipsumx*[5] A \gls{duckl} and
\gls[format={primary}]{pi}.

\lipsum*[6] A \gls[format={primary}]{duck}.

\printunsrtglossaries
\end{document}

Note that the counter={equation} entry will have its own independent location. In this
example, it’s difficult to tell the difference between 1 (the equation reference) and 1 (the page
reference) in the location list for the pi entry.

The format={primary} instances indicate principal references. They’re displayed in bold
(since \primary is defined to use \hyperbf) and these are the locations saved in the index-
counter field because that’s the (encap) identified by the save-index-counter={primary}
setting.

5.11 Supplemental Locations

These options require at least version 1.14 of glossaries-extra. If you require locations from
multiple external sources, then you need at least version 1.36 of glossaries-extra (or, more
specifically, glossaries—extra-bib2gls, which is automatically loaded by the record={only}
package option).

The glossaries-extra package (from v1.14) provides a way of manually adding locations in
supplemental documents through the use of the thevalue option in the optional argument
of \glsadd. Setting values manually is inconvenient and can result in errors, so bib2gls
provides a way of doing this automatically. Both the main document and the supplementary
document need to use the record option. The entries provided in the src set must have the
same labels as those used in the supplementary document. (The simplest way to achieve this
is to ensure that both documents use the same .bib files and the same prefixes.)

For example, suppose the file entries.bib contains:

@entry{sample,
name={sample},
description="an example entry"

269

5.11 Supplemental Locations

O@abbreviation{html,
short="html",
long={hypertext markup language}

3

@abbreviation{ssi,
short="gssi",
long="server—-side includes"

3

@index{goose,plural="geese"}
Now suppose the supplementary document is contained in the file suppl.tex:

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [record, counter={section}]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]

\renewcommand{\thesection}{S\arabic{section}}
\renewcommand{\theHsection}{\thepart.\thesection}

\begin{document}
\part{Sample Part}
\section{Sample Section}
\gls{goose}. \gls{sample}.

\part{Another Part}
\section{Another Section}
\gls{html}.

\gls{ssil}.

\printunsrtglossaries
\end{document}

This uses the section counter for the locations and has a prefix (\thepart.) for the section
hyperlinks.

Now let’s suppose I have another document called main. tex that uses the sample entry,
but also needs to include the location (S1) from the supplementary document. The manual
approached offered by glossaries-extra is quite cumbersome and requires setting the external-
location attribute and using \glsadd with thevalue={S1}, theHvalue={I.S1} and format
={glsxtrsupphypernumber}

270

5.11 Supplemental Locations

This can be simplified with bib2gls by using the supplemental-locations option, de-
scribed below.

Version 1.36 of glossaries—extra-bib2gls introduces some special location formatting com-
mands that don’t use the externallocation attribute, but instead have an extra argument that
indicates the external reference. The additional argument means that it can’t be used by the
format key, but with bib2gls you don’t use \glsadd to record the external locations. In-
stead it obtains the records from the corresponding supplementary .aux file, and adjusts the
location encapsulator as appropriate.

If bib2gls detects an older version of glossaries-extra, it will only allow one external sup-
plemental source, and will set the externallocation attribute and use the glsxtrsupphyper-
number format. Otherwise bib2gls will allow multiple sources and use the newer method.

supplemental-locations=(basename)

The value should be the base name (without the extension) of the supplementary document
(suppl in the above example). If you have at least version 1.36 of glossaries-extra, the value
may be a comma-separated list of base names (without the extensions) of the supplementary
documents. If an older version is detected, bib2gls will issue a warning and only accept the
first element of the list.

For example:

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations={suppl},’% fetch records from suppl.aux
src={entries}]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries
\end{document}

The location list for sample will now be “1, S1” (page 1 from the main document and S1 from
the supplementary document).

With glossaries-extra v1.36+, a regular location from the supplementary document will be
encapsulated with:

\glsxtrdisplaysupploc{(prefix)}{(counter)}{(format)}{(src)}{(location)?

By default, this simply creates an external hyperlink to the supplementary document with
the location as the hyperlink text. The hyperlink is created using (src) as the target path

271

5.11 Supplemental Locations

with the fragment part (anchor) formed from the prefix and location. The externallocation
attribute is not set in this case. The actual formatting is done via:

\glsxtrmultisupplocation{(location)}{(src)}{(format)}
which ignores the (format) argument by default. Its definition is simply:

\newcommand*{\glsxtrmultisupplocation}[3]{%

{% scope required to localise changes
\def\glsxtrsupplocationurl{#2}J
\glshypernumber{#1}/,

3

}

This locally sets the command \glsxtrsupplocationurl, which is checked by \glshyper-
number to establish an external rather than internal link. You can redefine the supplemental
location command to retain the original ENcAP used in the target document:

\renewcommand*{\glsxtrmultisupplocation}[3]1{%

{% scope required to localise changes
\def\glsxtrsupplocationurl{#2}J
\csuse{#3}{#1}/,

3

}

but remember that if a hyperlink is required, the identified control sequence name must
correspond to a command that uses \glshyperlink (such as \hyperbf), otherwise you will
lose the hyperlink.

With older versions of glossaries-extra, the original location format from the supplemen-
tary document will be replaced by glsxtrsupphypernumber, which again produces an ex-
ternal hyperlink. The externallocation attribute also needs to be set (this can be done auto-
matically with supplemental-category) to identify the external document. The original
format can’t be accessed.

In both cases, if the document hasn’t loaded the hyperref package, the location will simply
be displayed without a hyperlink. Even if both the main and the supplementary documents
have loaded hyperref, note that not all PDF viewers can handle external hyperlinks, and some
that can open the external PDF file may not recognise the destination within that file.

The special nameref locations (see —~—merge-nameref-on) are still identified with \gls-
xtrdisplaylocnameref but the (file) argument will now be set.

As from bib2gls v1.7, any awkward characters in the file path are replaced with \bib-
glshrefchar or (for non-ASCII characters, when supported) \bibglshrefunicode. Both
commands take two arguments: the hexadecimal character code and the actual character. In
the case of \bibglshrefchar, the second argument is ignored, and the first is preceded by
a literal percent character, so file name.pdf will be converted to:

file\bibglshrefchar{20}{ }name.pdf

272

5.11 Supplemental Locations

which will expand to file%20name.pdf. In the case of \bibglshrefunicode, the first
argument is ignored, so skrdarnafn.pdf will be converted to:

skr\bibglshrefunicode{E1}{a}arnafn.pdf

which will expand to skraarnafn.pdf.

The supplementary location lists are encapsulated within \bibglssupplemental. With
glossaries-extra v1.36+, this command will encapsulate the sub-lists with \bibglssupple-
mentalsublist.

So the above example with an old version of glossaries-extra (pre 1.36) will set the supple-
mental location list (which only consists of one location) to:

\bibglssupplemental
{1} {\setentrycounter[I]{section}\glsxtrsupphypernumber{S1}}

and the external target must be supplied through the externallocation attribute, which can
be set with the supplemental-category option.
Whereas with at least version 1.36, the list will be:

\bibglssupplemental{1}{\bibglssupplementalsublist{1}{suppl.pdf}
{\glsxtrdisplaysupploc{I}{section}{glsnumberformat}{suppl.pdf}{S1}}}

If an entry has both a main location list and a supplementary location list (such as the
sample entry above), the lists will be separated by \bibglssupplementalsep. The sub-
lists (when supported) are separated by \bibglssupplementalsubsep.

supplemental-selection=(value)

In the above example, only the sample entry is listed in the main document, even though
the supplementary document also references the goose, html and ssi entries. By default,
only those entries that are referenced in the main document will have supplementary lo-
cations added (if found in the supplementary document’s .aux file). You can additionally
include other entries that are referenced in the supplementary document but not in the main
document using supplemental-selection. The (value) may be one of the following:

 all: add all the entries in the supplementary document that have been defined in the
.bib files listed in src for this resource set in the main document.

« selected: only add supplemental locations for entries that have already been selected
by this resource set.

o (label-1),...,(label-2): in addition to all those entries that have already been selected by
this resource set, also add the entries identified in the comma-separated list. If a label
in this list doesn’t have a record in the supplementary document’s . aux file, it will be
ignored.

273

5.11 Supplemental Locations

Any records in the supplementary .aux file that aren’t defined by the current resource set
(through the .bib files listed in src) will be ignored. Entry aliases aren’t taken into account
when including supplementary locations.

For example:

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources|[
supplemental-locations={suppl},
supplemental-selection={html,ssi},
src={entries}]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries
\end{document}

This will additionally add the html and ssi entries even though they haven’t been used in
this document. The goose entry used in the supplementary document won’t be included.

supplemental-category={value)

The category field for entries containing supplemental location lists may be set using this
option. If unset, (value) defaults to the same as that given by the category option. The
(value) may either be a known identifier (as per category) or the category label. For exam-

ple:

\documentclass{article}

\usepackage [colorlinks]{hyperref}
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations={suppl},
supplemental-selection={html,ssi},
supplemental-category={supplemental},
src={entries}]

\begin{document}
\Gls{sample} document.

274

5.12 Sorting

\printunsrtglossaries
\end{document}

A value of false will switch off this setting (the default).

5.12 Sorting

Entries are typically displayed in an ordered list, but the glossaries-extra package is versatile
enough to be used in wider contexts than simple terms, symbols or abbreviations. For ex-
ample, entries could contain theorems or problems where the name supplies the title and the
description provides a description of the theorem or problem. Another field might then
contain the proof or solution. Therefore, somewhat unusually for an indexing application,
bib2gls also provides the option to shuffle the entries instead of sorting them.

This section covers the resource options for sorting primary entries. See section 5.14
for sorting dual entries and also sort-label-1ist for sorting field values that contain a
comma-separated list of entry labels (such as the see or seealso fields).

The sort methods that use a comparison function (that is, all the sort methods except those
listed in table 5.1) require a sort value for each entry. The function compares these values to
determine the order. By default, this sort value is obtained from the sort field but for greater
flexibility it’s best to not actually set this field. bib2gls has a set of fallbacks that it uses if
a field it needs to access is missing. These fallbacks depend on the entry type and resource
settings (see section 5.8).

For example, if a term defined with @index doesn’t have the sort field set then bib2gls
will use the value given by the name field because name is the fallback field for sort for
@index entries. If the name field isn’t set either then bib2gls will use the fallback for that
field. In the case of @index that’s the entry’s label. If the sort field is explicitly set then
there’s no need to use the fallback.

If, on the other hand, a term defined with @symbol doesn’t have the sort field set then
bib2gls will use the value from the field identified by symbol-sort-fallback, which is
the entry’s label by default (not the name field).

This means that if I don’t explicitly set the sort field for any entries thenI can, for example,
sort terms defined with @index by name and those defined with @symbol by description
with the setting:

symbol-sort-fallback={description}

If the field used to obtain the sort value is changed (with sort-field) then the sort field
won’t be queried. This reduces the flexibility of selecting the most appropriate field for given
entry types. For example, sort-field={name} will force all entries to be sorted by the name
field, which may not be appropriate for symbols.

If you choose a field whose value must be a label (such as parent or group) then the
sort value will be that label.

275

5.12 Sorting

You can have @preamble definitions that can be hidden from bib2gls’s interpreter. For
example, no-interpret-preamble.bib might contain:

Opreamble{"\providecommand{\sortop}[2]{#1 #2}"}
which is loaded using:

\GlsXtrLoadResources[src={no-interpret-preamble},
interpret-preamble={false}]

This provides a custom command:

\sortop{(text1)}{(text2)}

for internal use in the document. (Remember it won’t be defined on the first ETgX run before
the . glstex file has been created and so is only used within entry fields.)
Another file, say, interpret-preamble.bib may provide a definition for bib2gls:

Opreamble{"\providecommand{\sortop}[2]{#2, #1}"}

which can be processed with:
\GlsXtrLoadResources[src={interpret-preamble}]

to provide bib2gls with this definition. The entries.bib file could contain:

@entry{caesar,
name={\sortop{Gaius Julius}{Caesar}},
first={Julius Caesar},
text={Caesar},
description={Roman politician and general}

}
and then be processed with:
\GlsXtrLoadResources[src={entries}]

The definition provided in interpret-preamble.bib, which swaps the two arguments
around, is now picked up by bib2gls, so the sort value becomes Caesar, Gaius Julius,
but this new definition doesn’t affect the document since EIEX has already defined \sortop
from the first resource set, so the name will appear as “Gaius Julius Caesar” in the glossary. (If
you have \renewcommand rather than \providecommand, you can prevent the redefinition
occurring in the document with write-preamble={false}.)

Alternatively both of these .bib files can be loaded in one resource set:

\GlsXtrLoadResources[src={interpret-preamble,entries}]

Another possibility is to provide a custom package that contains the command definitions
for the bib2gls interpreter and load it with ——custom-packages instead of having the
interpret-preamble.bib file.

276

5.12 Sorting

sort=(value)

The sort key indicates how primary entries should be sorted. If the (value) is omitted, sort
={resource} is assumed. Note the differences between the keywords resource, doc and
locale:

resource The default resource locale, which can be specified with the locale option. If
that option hasn’t been set, then resource will be equivalent to doc. This option is
new to bib2gls v3.3. Previous versions had sort={doc} as the default.

doc The document locale if it has been detected by tracklang. If no document language has
been detected (or identified with --1ocale), then doc will be equivalent to locale.

locale The default Java locale.

The (method)-reverse options reverse the result returned by the corresponding (method)
comparator. However (method)-reverse may not produce a list that’s the exact reverse of
the underlying non-reversed (method) as the hierarchical structure or associated settings can
affect the order.

No Sort Field

Most of the sort methods listed in table 5.1 don’t actually perform any sorting. This may
cause a problem for hierarchical entries. In some cases this can lead to detached child entries
or an attempt to define a child entry before its parent. The methods listed in this section all
ignore the sort-field setting and all the various sort fallback settings, except where noted
below.

« none (or unsrt): don’t sort the entries. (The entries will be in the order they were
processed when parsing the data.)

If you need to order by definition but also maintain hierarchy then use:

save—-definition-index,
sort-field={definitionindex},
sort={integer}

« random: shuffles rather than sorts the entries. This won’t work if there are hierar-
chical entries, so it’s best to use this option with flatten. The seed for the random
generator can be set using shuffle (which also automatically sets sort={random}
and flatten).

« use: order of use. This order is determined by the records written to the .aux file
by the record package option. Dependencies and cross-references (including those
identified with \glssee) come after entries with records.

Note that this is different from using the analogous option with makeindex or xindy,
which does actually sort numerically, where each entry has an associated number set
on the first use of that term that’s used as the sort value.

If you need to order by use but also maintain hierarchy then use:

277

5.12 Sorting

Table 5.1: Summary of Available Sort Options: No Sort Field

none or unsrt don’t sort

random shuffle entries

use order of use
use-reverse reverse order of use
recordcount’ order of record count

recordcount-reverse’ reverse order of record count

TRequires -—record-count switch.

Table 5.2: Summary of Available Sort Options: Alphabet

(lang tag) sort according to this language tag

(lang tag)-reverse reverse sort according to this language tag

resource sort according to the default resource locale
resource-reverse reverse sort according to the default resource locale
doc sort according to the document locale

doc-reverse reverse sort according to the document locale

locale sort according to the default Java locale
locale-reverse reverse sort according to the default Java locale
custom sort according to sort-rule={{custom rule)}
custom-reverse reverse sort according to sort-rule={{custom rule)}

Table 5.3: Summary of Available Sort Options: Letter (Non-Locale)

letter-case case-sensitive letter sort
letter—-case-reverse reverse case-sensitive letter sort
letter—nocase case-insensitive letter sort
letter—-nocase-reverse reverse case-insensitive letter sort
letter-upperlower upper-lower letter sort
letter-upperlower-reverse reverse upper-lower letter sort
letter-lowerupper lower-upper letter sort

letter-lowerupper-reverse reverse lower-upper letter sort

Table 5.4: Summary of Available Sort Options: Letter-Number

letternumber-case case-sensitive letter-number sort
letternumber-case-reverse reverse case-sensitive letter-number sort
letternumber-nocase case-insensitive letter-number sort
letternumber-nocase-reverse reverse case-insensitive letter-number sort
letternumber-upperlower upper-lower letter-number sort
letternumber-upperlower-reverse reverse upper-lower letter-number sort
letternumber-lowerupper lower-upper letter-number sort

letternumber-lowerupper-reverse reverse lower-upper letter-number sort

278

5.12 Sorting

Table 5.5: Summary of Available Sort Options: Numerical

integer integer sort

integer-reverse reverse integer sort

hex hexadecimal sort

hex-reverse reverse hexadecimal sort

octal octal sort

octal-reverse reverse octal sort

binary binary sort

binary-reverse reverse binary sort

float float sort

float-reverse reverse float sort

double double sort

double-reverse reverse double sort

numeric locale-sensitive numeric sort
numeric-reverse reverse locale-sensitive numeric sort
currency locale-sensitive currency sort
currency-reverse reverse locale-sensitive currency sort
percent locale-sensitive percent sort
percent-reverse reverse locale-sensitive percent sort
numberformat locale-sensitive custom numeric sort

numberformat-reverse reverse locale-sensitive custom numeric sort

Table 5.6: Summary of Available Sort Options: Date-Time

date locale-sensitive date sort
date-reverse reverse locale-sensitive date sort
datetime locale-sensitive date-time sort
datetime-reverse reverse locale-sensitive date-time sort
time locale-sensitive time sort
time-reverse reverse locale-sensitive time sort

279

5.12 Sorting

save-use-index,
sort-field={useindex},
sort={integer}

use-reverse: reverses the order that would be obtained with sort={use} without
reference to hierarchy.

recordcount: order of record count (starting from 0). This order is determined by
the total number of records written to the .aux file for each entry. Unlike the above
methods, this performs a hierarchical sort. If letter groups are enabled with --group,
this method will assign the entries to the number group.

This option requires the -~—record-count switch. Although that switch makesbib2gls
write the total record count to the .glstex file in the recordcount internal field (so
that it can be accessed in the document), bib2gls doesn’t actually have a field it-
self that contains the information. So although this option behaves much like sort=
{integer} it’s not possible to select a field containing the required value. In the event
of two or more entries having the same record count, the identical-sort-action
option is used to determine the relative ordering between them.

recordcount-reverse: reverse order of record count (ending with 0). All the above
notes applying to recordcount also apply here.

Suppose the file entries.bib contains definitions of a set of symbols that don’t have any
intuitive ordering (for example, they are all pictographs) then there may be no point in trying
to order them, in which case you can do:

\GlsXtrLoadResources [src={entries},sort={nonel}]

Alternatively, you could list them in order of use:

\GlsXtrLoadResources[src={entries},sort={use}]

or by frequency of use. For example, starting with entries that don’t have any records fol-
lowed by the least used entries (a rarely-used symbol may be harder to remember and most
likely to be looked up in the glossary):

\GlsXtrLoadResources [src={entries},sort={recordcount}]

Or starting with the most used entries:

\GlsXtrLoadResources[src={entries},sort={recordcount-reversel}]

It all depends on what’s likely to be most useful to the reader.
Consider the following:

280

5.12 Sorting

\newglossary*{frequent}{Most Frequently Used Terms}

\GlsXtrLoadResources|[src={entries}, sort={use},
secondary={recordcount-reverse:frequent}

]

\newcommand{\filterhook} [1]{%
\GlsXtrIfFieldCmpNum*{recordcount{#1}{>}{10}%
{3
{\printunsrtglossaryskipentry}’

}

\begin{document}

\printunsrtglossary*[target={false},type={frequent}]{’
\let\printunsrtglossaryentryprocesshook\filterhook

}

% Main body of the document ..

\printunsrtglossary

\end{document}

This has a summary at the start of the document that only contains entries that have at least
10 records and is ordered according to the total number of records (starting with the most
frequently used entry). The main glossary at the end of the document is ordered according
to use and contains all selected entries.

Compare this with the following:

\GlsXtrLoadResources[src={entries},sort={usel}]

\newcommand{\filterhook} [1]{%
\GlsXtrIfFieldCmpNum*{recordcount H{#1}{>}{10}%
{3
{\printunsrtglossaryskipentry}/,

}

\begin{document}

\printunsrtglossary*[target={false},

title={Most Frequently Used Terms}]{%
\let\printunsrtglossaryentryprocesshook\filterhook

}

% Main body of the document ..

\printunsrtglossary

\end{document}

This again has a summary at the start of the document that only contains entries that have
at least 10 records but is now ordered according to use.

Both examples assume there are no child entries as the filtering can cause parent entries
to be omitted. Both examples require -—-record-count but only the first example sorts ac-
cording to the record count.

281

5.12 Sorting

Alphabet

The sort methods listed in table 5.2 are for alphabets that are defined by a rule. These usually
ignore most punctuation and may ignore modifiers (such as accents). Use with break-at
to determine whether or not to split at word boundaries. The collation rules (except for the
custom options) are obtained from the locale provider (see page 31).

(lang tag): sort according to the rules of the locale given by the 1ETF language tag
(lang tag).
{)

lang tag)-reverse: reverse sort according to the rules of the locale given by the 1ETF
language tag (lang tag).

resource: equivalent to sort={(lang tag)} where (lang tag) is obtained from the
default resource locale.

resource-reverse: equivalent to sort={(lang tag)-reverse} where (lang tag) is
obtained from the default resource locale.

locale: equivalent to sort={(lang tag)} where (lang tag) is obtained from the Java
locale (which usually matches the operating system’s locale).

locale-reverse: equivalent to sort={(lang tag)-reverse} where (lang tag) is ob-
tained from the Java locale.

doc: sort the entries according to the document locale. This is equivalent to sort=
{(lang tag)} where (lang tag) is the locale associated with the document language.
In the case of a multi-lingual document, (lang tag) is the locale of the last language
resource file to be loaded through tracklang’s interface. It’s best to explicitly set the
locale for multi-lingual documents to avoid confusion. If no document language has
been set, this option is equivalent to sort={locale}.

doc-reverse: as doc but in reverse order.
custom: sort the entries according to the rule provided by sort-rule.

custom-reverse: reverse sort the entries according to the rule provided by sort
-rule.

Note that sort={(lang tag)} can provide more detail about the given locale than sort=
{doc}, depending on how the document language has been specified. For example, with:

\documentclass{article}

\usepackage [ngerman] {babel}

\usepackage [record] {glossaries}
\GlsXtrLoadResources [src={german-terms}]

the language tag will be de-1996, which doesn’t have an associated region, so this is equiv-
alent to using sort={de-1996}. Whereas with:

282

5.12 Sorting

\documentclass[de-DE-1996]{article}
\usepackage [ngerman] {babel}

\usepackage [record] {glossaries}
\GlsXtrLoadResources [src={german-terms}]

the language tag will be de-DE-1996 because tracklang has picked up the locale from the
document class options, so this is equivalent to using sort={de-DE-1996}. This is only
likely to cause a difference if a language has different sorting rules according to the region
or if the language may be written in multiple scripts.

If no document locale has been set and the 1ocale resource option hasn’t been used then
the sort={resource} and sort={doc} will be equivalent to sort={locale}. For example,
with:

\documentclass{article}
\usepackage [record] {glossaries}
\GlsXtrLoadResources [src={german-terms}]

the language tag will be whatever is the default locale for the yvm. For a user in Germany,
this could be de-DE-1996 and for a user in Austria this could be de-AT-1996.

A multilingual document will need to have the sort specified when loading the resource
set to ensure the correct language is chosen. For example:

\GlsXtrLoadResources[src={english-terms},sort={en-GB}]
\GlsXtrLoadResources[src={german-terms}, sort={de-DE-1996}]

Alternatively (as from bib2gls v3.3), use locale:

\GlsXtrLoadResources[locale={en-GB},src={english-terms}]
\GlsXtrLoadResources[locale={de-DE-1996},src={german-terms}]

Letter (Non Locale)

The sort methods listed in table 5.3 use letter comparators. These simply compare the charac-
ter codes. The —nocase options first convert the sort field to lower case before performing
the sort to provide a case-insensitive comparison.

Punctuation isn’t ignored. Use sort={(lang tag)} with break-at={none} to emulate
xindy’s locale letter ordering. The examples below show the ordering of the list antelope,
bee, Africa, aardvark and Brazil.

+ letter-case: case-sensitive letter sort. Upper case and lower case are in separate
letter groups. Example:

Africa (letter group upper case “A”), Brazil (letter group upper case “B”), aardvark
(letter group lower case “a”), antelope (letter group lower case “a”), bee (letter group
lower case “b”).

283

5.12 Sorting

letter-case-reverse: reverse case-sensitive letter sort. Example:

bee (letter group lower case “b”), antelope (letter group lower case “a”), aardvark
(letter group lower case “a”) Brazil (letter group upper case “B”), Africa (letter group
upper case “A”).

letter-nocase: case-insensitive letter sort. (All upper case characters will have first
been converted to lower case in the sort value.) Example:

aardvark (letter group “A”), Africa (letter group “A”), antelope (letter group “A”),
bee (letter group “B”), Brazil (letter group “B”).

letter-nocase-reverse: reverse case-insensitive letter sort. Example:

Brazil (letter group “B”), bee (letter group “B”), antelope (letter group “A”), Africa
(letter group “A”), aardvark (letter group “A”).

letter-upperlower: each character pair is first compared according to their lower
case values. If these are equal, then they are compared according to case. This puts
upper and lower case in the same letter group but the upper case comes first. Example:

Africa (letter group “A”), aardvark (letter group “A”), antelope (letter group “A”),
Brazil (letter group “B”), bee (letter group “B”).

letter-upperlower-reverse: reverse upper-lower letter sort. This now puts the
lower case letters first within the letter group. Example:

bee (letter group “B”), Brazil (letter group “B”), antelope (letter group “A”), aardvark
(letter group “A”), Africa (letter group “A”).

letter-lowerupper: each character pair is first compared according to their lower
case values. If these are equal, then they are compared according to case. This puts
upper and lower case in the same letter group but the lower case comes first. Example:

aardvark (letter group “A”), antelope (letter group “A”), Africa (letter group “A”),
bee (letter group “B”), Brazil (letter group “B”).
letter-lowerupper-reverse: reverse lower-upper letter sort. This now puts the

upper case letters first within the letter group. Example:

Brazil (letter group “B”), bee (letter group “B”), Africa (letter group “A”), antelope
(letter group “A”), aardvark (letter group “A”).

Letter-Number

The sort methods listed in table 5.4 use a letter-integer hybrid. They behave in a similar
way to the above letter sort methods, but if an integer number pattern is detected in the
string then the sub-string containing the number will be compared. This only detects base
10 integers (unlike the numeric methods such as sort={hexadecimal} or sort={float})
but in addition to recognising all the digits in the Unicode “Number, Decimal Digit” category
it also recognises the subscript and superscript digits, such as ! (0x00B9) and * (0x00B2).

284

5.12 Sorting

As with the letter sort methods, letters are compared using a character code comparison
not by a locale alphabet. The closest locale-sensitive equivalent is to use sort-number-pad
with a locale sort method. Alternatively, use \IfTeXParserLib or \IfNotBibGls and \bib-
glspaddigits to pad the number for the interpreter but not in the TgX document.

A | = | Qe A | = |Qa
by, by, by, by,
Cwxs| = | Cys Cexs| = | Cqs
1, <1654 11>16

32 b, 2 b,
f66 A f66 A
O Lo, Ot I
O O

(a) (b)

Figure 5.1: Regular letter comparison vs letter-number comparison. Comparing the strings
abc12foo and abc6bar: (a) letter-case; (b) letternumber-case.

For example, suppose the first string is abc12foo and the second string is abc6bar. Fig-
ure 5.1(a) shows the regular letter comparison using sort={letter-case}, where the sub-
script indicates the hexadecimal character code. The first three characters from each string
are identical (abc). At this point there’s no difference detected, so the comparator moves on
to the next character, 15, for the first string and 65 for the second string. Since 0x31 is less
than 0x36, the first string (abc12fo00) is considered less than the second (abc6bar).

With the letter-number comparison using sort={letternumber-case}, the comparator
starts in much the same way. The first three characters from each string are still identical,
so the comparator moves on to the next character, 1 for the first string and 6 for the second.
These are now both recognised as digits, so the comparator looks ahead and reads in any
following digits (if present). For the first case, this is the sub-string 12 and, for the second
case, 6 (figure 5.1(b)). These are both compared according to their integer representation
12 > 6, so abc12bar is considered greater than abc6foo (that is, abc12bar comes after
abc6f00).

The same result occurs for other numbering systems, for example if the Basic Latin digits
1, 2 and 6 are replaced with the corresponding Devanagari digits 9, ? and . (But note that
the letter comparisons will still be based on their Unicode values not according to a particular
locale. This type of sort method is intended primarily for symbolic values, such as chemical

285

5.12 Sorting

formulae, rather than for words or phrases.)

Signed integers are also recognised, so abc-12foo is less than abc+6bar, which is again
different from the result obtained with a straight letter comparator where the character +
(0x2B) comes before the character - (0x2D). The sign must be followed by at least one digit
for it to be recognised as a number otherwise it’s treated as a punctuation character.

If only one sub-string is numeric then the letter-number-rule is used to determine
the result. Where both sub-strings are non-numeric, then the letter-number-punc-rule
setting is used to determine the result according to the category of the characters, which may
be one of the following:

« white space: belongs to the Unicode “Separator, Space” category. If both characters
are white space, then they are compared according to their Unicode values otherwise
they are ordered according to the letter-number-punc-rule setting.

» &«

« letter: belongs to one of the Unicode categories “Letter, Uppercase”, “Letter, Lower-
case”, “Letter, Titlecase”, “Letter, Modifier” or “Letter, Other”. If both characters are
letters then, for sort method letternumber-(modifier), the characters are compared
in the same way as the corresponding letter-{modifier) sort method otherwise they
are ordered according to the letter-number-punc-rule setting.

 punctuation: everything else. If both characters are punctuation, then they are com-
pared according to their Unicode value otherwise they are ordered according to the
letter-number-punc-rule setting.

For simplicity, the actual sort value used during sorting isn’t a simple string but is converted
into a list of objects that represent one of: letter, integer, space or other (punctuation). This
reduces the amount of parsing of substrings that needs to be performed.

The examples below show the ordering of the list: CH,0, C;,H;,04, CsH4NCOOH, CO, C1, Co,
Co,03, Cog, CO,y, CoMo0, and CoCl,, for the setting letter-number-rule={between}, where
the subscripts are the Unicode subscript characters.

+ letternumber-case: case-sensitive letter-number sort. Example:
CH20, CO, COQ, C5H4NCOOH, C10H1004, Cl, Co, COC12, COM004, CO2, COQOg.
(Order determined by: H< 0 <5< 10<1<o0.)

« letternumber-case-reverse: reverse case-sensitive letter-number sort. Example:
C0203, COQ, COMOO4, COC].Z, CO, Cl, C10H1004, C5H4NCODH, COQ, CO, CH20

« letternumber-nocase: case-insensitive letter-number sort. The sort value is first
converted to lower case. Note that letter—-number-rule={between} doesn’t make

sense in this context as there won’t be any upper case characters in the sort value, so
numbers will always come before letters. Example:

C5H4NCOOH, C10H1004, CHQO, Cl, CO, CO, COQ, COQ, 00203, COClQ, COMOO4.
(Order determined by: 5 < 10 <h <1 < 0.

286

5.12 Sorting

. letternumber-nocase-reverse: reverse case-insensitive letter-number sort, so num-
bers will now always come after letters. Example:

COMOO4, COClg, C0203, COQ, COQ, CO, CD, Cl, CHQO, C10H1004, C5H4NCOOH

+ letternumber-upperlower: upper-lower letter-number sort. This behaves slightly
differently to letter-upperlower when used with letter-number-rule={between}
and has a more complicated rule that’s determined by the character following the num-
ber and implied numbers inserted between letters. (There was a bug in earlier versions
that has been corrected in v1.8 so you may find a slightly different ordering when
upgrading.) Example:
CHQO, C5H4NCOOH, C10H1004, Cl, CD, COQ, CO, COQ, COClQ, COMOD4, COQOg.

(Order determined by: H < 5H < 10H < 1 < 0 < o, and for the terms starting with CO
or Co: 2 comes after null and C < M < 20.)

Compare this with letter-number-rule={before letter} which results in the or-
der:

C5H4NCDOH, C10H1004, CHQO, Cl, CO, COQ, Co, COQ, COQOS, COClQ, COMOO4.

. letternumber—upperlower—reverse: reverse upper-lower letter-number sort. Ex-
ample (with letter-number-rule={between}):
00203, COMOO4, COClQ, COQ, CO, COQ, CO, Cl, C10H1004, C5H4NCOOH, CHQD

Compare this with letter-number-rule={before letter} which results in the or-

der:
COMOO4, COClQ, C0203, COQ, Co, CO2, CO, Cl, CH20, C10H1004, C5H4NCOOH
Remember that the associated settings are reversed as well. So letter-number-rule

={before letter} results in numbers after letters.

+ letternumber-lowerupper: lower-upper letter-number sort. As with the upper-
lower option, this behaves slightly differently to letter-lowerupper when used with
letter-number-rule={between} and has a more complicated rule. Example:

CHQO, C5H4NCOOH, CloH1004, Cl, CO, COQ, COC12, COMOO4, 00203, CO, C02

Compare this with letter-number-rule={before letter} which results in the or-
der:

C5H4NCDOH, C10H1004, CHQD, Cl, CO, COQ, C0203, COC].Q, COMOO4, CO, C02

+ letternumber-lowerupper-reverse: reverse lower-upper letter-number sort. Ex-
ample (with letter-number-rule={between}):

CO2, CO, C0203, COMOO4, COClg, CO2, CO, Cl, C10H1004, C5H4NCOOH, CHQD

287

5.12 Sorting

Numerical

The sort methods listed in table 5.5 use numeric comparisons. The sort value is expected to
be a numeric value. If it can’t be parsed then it’s treated as 0 (and a warning will be written
to the transcript). These all recognise the digits in the Unicode “Number, Decimal Digit”
category but, unlike the hybrid letter-number comparators above, they don’t recognise the
superscript or subscript digits. The “non-locale” in some of the descriptions below indicates
that the method doesn’t recognise locale-sensitive formatting, such as group separators.

integer: integer sort. This is for non-locale integer sort values.
integer-reverse: as above but reverses the order.

hex: hexadecimal integer sort. This is for non-locale hexadecimal sort values.
hex-reverse: as above but reverses the order.

octal: octal integer sort. This is for non-locale octal sort values.
octal-reverse: as above but reverses the order.

binary: binary integer sort. This is for non-locale binary sort values.
binary-reverse: as above but reverses the order.

float: single-precision sort. This is for non-locale decimal sort values.
float-reverse: as above but reverses the order.

double: double-precision sort. This is for non-locale decimal sort values.
double-reverse: as above but reverses the order.

numeric: locale-sensitive numeric sort. Use numeric-locale to set the locale.
numeric-reverse: as above but reverses the order.

currency: locale-sensitive currency sort. Use numeric-locale to set the locale.
currency-reverse: as above but reverses the order.

percent: locale-sensitive percent sort. Use numeric-locale to set the locale.
percent-reverse: as above but reverses the order.

numberformat: locale-sensitive custom numeric sort. Use numeric-locale to set the
locale and numeric-sort-pattern to set the number pattern.

numberformat-reverse: as above but reverses the order.

In general, it doesn’t make much sense to have hierarchical entries that need to be sorted
by a number, but it is possible as long as each level uses the same type of numbering,.

288

5.12 Sorting

Date-Time

The sort methods listed in table 5.6 are for dates and times. Use date-sort-format and
date-sort-locale to specify the date format and locale.

« date: sort dates.

. date-reverse: as above but reverses the order.

« datetime: sort date and time information.

« datetime-reverse: as above but reverses the order.
o time: sort times.

. time-reverse: as above but reverses the order.

If the field you want to sort by contains a date then the simplest way to sort is to ensure
the date is in ISO format and then just use a letter sort. However it may be that the date is
in the format particular to your locale or you have a mix of Ap and Bc. In which case you
can use one of the date/time sort options (such as sort={date} or sort={date-reversel}).
The locale is assumed to be your default locale (as given by the jvm) but if you are using a
different locale this can be set with date-sort-locale. The pattern is assumed to be the
default for that locale but you can change this with date-sort-format. If you provide your
own custom pattern you must make sure that it matches the selected sort option.

Take care if you switch from using the JRE to the cLDR locale provider as you may find the
default pattern changes.

The locale and pattern information is used by bib2gls to parse the field. If the field value
can’t be parsed then bib2gls will issue a warning and assume the current date (or time).

The actual sort value that’s used by the comparator is numeric. In the case of the time-
based sort={datetime} and sort={time} (or their -reverse versions), this value is the
number of milliseconds since 1st January, 1970. In the case of sort={date} (or sort={date-
reverse}), this value is obtained from a(y x 10000 +m x 100 + d) where y is the year, m is
the month number, d is the day of month number, and a is an integer representation of the
era (—1 for Bc and +1 for AD).

Unlike the numeric sort methods (such as sort={integer}) the date-time sort methods
set the sort field to a value that can be more easily parsed within the document and that
should mostly achieve the same ordering if a letter comparator were to be used with it (except
for Bc dates, where the order needs to be reversed). This has the by-product of providing a
field that you can access within the document that can be more easily parsed by ETEX.

In general, it doesn’t make much sense to have hierarchical entries that need to be sorted
by date, but it is possible as long as each level uses the same date format.

For example, suppose my .bib file contains:

@entry{journalentry,
name={10 Jan 2017},
description={an interesting journal entry}

}

289

5.12 Sorting

The name field uses an abbreviated UK date format. If all my other entries also use this format
in the name then I can sort them chronologically:

\GlsXtrLoadResources [
src={entries},’ data in entries.bib
sort={date},
date-sort-locale={en-GB},
date-sort-format={medium}

]

(The medium format is actually the default for this locale, and the locale matches my system
locale, so I could omit both date-sort-locale and date-sort-format.)

If --verbose mode is on, the transcript will show the label, sort value and numeric value
for each entry. In this case, the information is:

journalentry -> '+1 2017-01-10' [20170110]

The first value is the label (journalentry), the second value is assigned to the sort field
(+1 2017-01-10) and the number in square brackets is the actual numeric value used by the
comparator. The signed number at the start of the sort field +1 is the numeric representation
of the era as used for the a variable in the computation of the numeric value (as described
earlier).

If I change the format to date-sort-format={short}, then the date can’t be parsed cor-
rectly and bib2gls will issue the following warning:

Warning: Can't parse sort value '10 Jan 2017' for 'journalentry'
(pattern: 'dd/MM/yyyy")

This shows the value that bib2gls is trying to parse (10 Jan 2017) for the entry identified
by the given label (journalentry). The pattern bib2gls expects is also given (dd/MM/yyyy).

shuffle=(seed)

Automatically sets sort={random} and flatten. The value (seed) may be omitted. If
present, it should be an integer used as a seed for the random number generator.

sort-field=(field)

The sort-field key indicates which field provides the sort value. The (field) must be a

recognised field name or you may use sort-field={id} to sort according to the label. The

default value is the sort field (which is typically inferred rather than explicitly set).
Example:

\GlsXtrLoadResources[
src={entries-terms},% data in entries-terms.bib
sort-field={symbol},’ sort by 'symbol' field
sort={letter-case}), case-sensitive letter sort

]

290

5.12 Sorting

This sorts the entries according to the symbol field using a case-sensitive letter comparison.

In general it’s better to use the default sort-field={sort} and adjust the fallbacks
instead (see section 5.8). The sort-field option is provided if you want to use a
specific field regardless of the entry type.

If an entry is missing a value for (field), then the value of the fallback field will be used
instead. If missing-sort-fallback is set, then that’s used as the fallback, otherwise it
depends on the entry type. If no fallback field can be found, the entry’s label will be used.

For the specific case with the default sort-field={sort} setting, the fallback for the
sort field is governed not only by the entry type but also by some associated settings:

« If the entry’s original type (before being aliased with entry-type-aliases)is identi-
fiedin custom-sort-fallbacks, thenif the sort field is missing the value is obtained
from the supplied custom mapping.

« If the entry is defined using @entry (or a dual form that acts like @entry), then if the
sort field is missing the value is obtained from the field identified by entry-sort
-fallback. If that field is also missing then that field’s fallback is used.

« For the index entry types like @index or @indexplural, then if the sort field is miss-
ing the value is obtained from the name field. If that field is also missing, then the value
is obtained from the particular entry type’s fallback for the name field. (For example,
the entry’s label for @index or the plural field for @indexplural.)

« If the entry is defined with an abbreviation type (for example, @abbreviation or
@acronym) then if the sort field is missing, bib2gls will fallback on the field given
by abbreviation-sort-fallback.

+ The symbol-like entry types fallback on the field given by symbol-sort-fallback if
the sort field is missing.

+ Entries defined using @bibtexentry fallback on the field given by bibtexentry-sort
-fallback, which defaults to the name field. Note that this only applies to the main
entry. The spawned @Qcontributor entries behave like @index.

Use dual-sort-field when sorting dual entries.

missing-sort-fallback={field)

With sort-field={(sort-field)}, if the value of the field identified by (sort-field) is missing,
then bib2gls behaves as follows:

1. If missing-sort-fallback={(fallback-field)} is set, then bib2gls will fallback on
the value provided by the field (fallback-field). If (fallback-field) is missing, then
bib2gls will query the entry type’s fallback for (fallback-field) (not for (sort-field)).

291

5.12 Sorting

The (fallback-field) must be a known field but not an internal field. It can’t be the
sort field. (Take care not to cause an infinite loop if sort-field has been changed.)
Unlike the other sort fallback options, such as entry-sort-fallback, the (fallback-
fleld) can’t be a keyword (to identify the label) and can’t be a composite.

2. If the entry type has a fallback rule for (sort-field), then that rule is used (see sec-
tion 5.8). When sort-field={sort} this means:

« Ifthe entry’s original entry type has been identified in custom-sort-fallbacks,
then bib2gls will fallback on the designated custom setting.

o If the entry was defined using one of the index types (such as @index), then
bib2gls will fallback on the name field.

« If the entry was defined using the G@entry type (or a dual form that acts like
Oentry), then bib2gls will fallback on the field given by entry-sort-fallback.

« If the entry was defined using one of the symbol types (such as @symbol), then
bib2gls will fallback on the field given by symbol-sort-fallback.

« Ifthe entry was defined using one of the abbreviation types (such as @abbreviation),
then bib2gls will fallback on the field given by abbreviation-sort-fallback.

« Ifthe entry was defined using @bibtexentry (but not the spawned @contributor
entries), then bib2gls will fallback on the field given by bibtexentry-sort
-fallback.

If (sort-field) is not sort, then there may not be a fallback, in which case the next
condition applies:

3. Otherwise the sort value will be set to the entry label and bib2gls will issue a warning.

The default setting is missing-sort-fallback={}, which means that step 1 above is omit-
ted.

Use dual-missing-sort-fallback when sorting dual entries separately from primaries,
and use secondary-missing-sort-fallback for secondary sorting.

trim-sort=(boolean)

If the interpreter is used to determine the sort value, this setting governs whether or not
the interpreter should trim leading and trailing spaces. The default setting is trim-sort=
{truel}.

This option automatically sets dual-trim-sort={(boolean)} and secondary-trim-sort

={(boolean)}.

sort-replace=(list)

This option may be used to perform regular expression substitutions on the sort value and
has the same syntax as labelify-replace. The value is required for this key but may be
empty, which indicates that the setting is switched off.

292

5.12 Sorting

This action is done after the interpreter parses the sort value (if applicable) and before
sort-number-pad (if applicable). For example, suppose the sort value is:

\ensuremath{\approx 3.14}
then the interpreter will convert this to ~3. 14 but:
sort-replace={{\glshex2248}{}}

can be used to strip the ~ symbol (0x2248) so that the value can now be parsed as a number
if sort={double} has been used.
Use dual-sort-replace fordualand secondary-sort-replace for secondary sort meth-

ods.

sort-rule=(value)

If the sort={custom} option is used, the sort rule must be provided with sort-rule. If
sort is not set to custom, the sort-rule setting will be ignored. This setting uses Java’s
RuleBasedCollator class [6], and the rule syntax needs to conform to that format.

Remember that the options will be expanded as they are written to the .aux file, so be
careful of any special characters that occur in the rule. For the special characters # % _ &
{ and } you can use \#, \%, _, \&, \{ and \}. These will be written to the .aux file with
the leading backslash, but bib2gls will remove it for this resource option. Remember that
the glossaries package provides \glsbackslash and \glstildechar which can be used to
produce a literal backslash (\) and tilde (~).

You can also use \string\u(hex) (where (hex) is a hexadecimal code) to represent a Uni-
code character. For example:

\GlsXtrLoadResources[
sort={custom},
sort-rule={< a,A < b,B < ¢,C < ¢ch,Ch,CH < d4,D
< dd,Dd,DD < e,E < f,F < ff,Ff,FF
g,G < ng,Ng,NG < h,H < ij,Ij,IJ
i, I < j,J<k,K<1,L <11,L1,LL < m,M
n,N < 0,0 < p,P < ph,Ph,PH < q,Q < r,R < rh,Rh,RH
s, < t,T < th,Th,TH < u,U < v,V < w,W < x,X < y,Y < z,Z
\string\uOOE6, \string\u00C6}

VAN A NV ANV ANEIVAN

]

It’s best to use \string rather than \protect to avoid unwanted spaces interfering with
(hex). Note that glossaries-extra v1.21+ provides® \glshex which just does \string\u so
you can do \glshex OOE6 instead of \string\uOOE6. This is only one character different,
but you can redefine \glsxtrresourceinit to locally set \uto \glshex while the protected
write is performed. For example:

>The command definition was moved to glossaries—extra-bib2gls from version 1.27 since it’s only needed with
bib2gls.

293

http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html

5.12 Sorting

\renewcommand*{\glsxtrresourceinit}{\let\u\glshex}

Then you can just do \uOOE6 instead of \string\uOOE6. Note that \GlsXtrResourceInit-
EscSequences performs a similar assignment, so you can instead do:

\renewcommand*{\glsxtrresourceinit}{J,
\GlsXtrResourceInitEscSequences

}

The glossaries—extra-bib2gls package (which is automatically loaded by the record option)
provides some commands for common rule blocks that may be used in the construction of
custom rules. For example:

sort-rule={\glsxtrcontrolrules
;\glsxtrspacerules
;\glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules
,\glsxtrhyphenrules
<\glsxtrgeneralpuncrules
<\glsxtrdigitrules
<\glsxtrfractionrules
<\glsxtrMathItalicGreekIrules
<\glsxtrGenerallLatinIVrules
<\glsxtrLatinAA
<\glsxtrLatinOslash

b

This places the Greek maths symbols (such as \alpha) before the Latin block. See the
glossaries-extra documentation for further details of these commands.

You might find it convenient to provide similar commands in a package for rules you may
often need. For example, suppose I have a package called, say, mapsymbols for providing
map symbols:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mapsymbols}

% some package or font loading stuff here to provide
% the appropriate symbols

\newcommand{\Stadium}{..}
\newcommand{\Battlefield}{..}
\newcommand{\Harbour}{..}

% etc

% Provide a rule block:
\newcommand{\MapSymbolOrder}{’
\glshex 2694 7, crossed-swords 0x2694
< \glshex 2693 7, anchor 0x2693

294

5.12 Sorting

< \glshex 26BD % football 0x26BD
}

In addition to mapsymbols.sty, I also need to create mapsymbols.bib to provide the ap-
propriate definitions for bib2gls:

Opreamble{"\glsxtrprovidecommand{\Harbour}{\char"2693}
\glsxtrprovidecommand{\Battlefield}{\char"2694}
\glsxtrprovidecommand{\Stadium}{\char"26BD}"}

The use of \glsxtrprovidecommand will override any previous definitions of these com-
mands in bib2gls’s interpreter but will act like \providecommand within the document,
and so won’t interfere with the commands defined in mapsymbols.sty. Now I can just do:

\usepackage{mapsymbols}/, my custom package
\usepackage [record] {glossaries-extra}

\GlsXtrLoadResources[
src={mapsymbols,’, <--- my custom mapsymbols.bib
entries’, data in entries.bib
s
sort={custom},
sort-rule={\glsxtrcontrolrules
; \glsxtrspacerules
;\glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules
,\glsxtrhyphenrules
<\glsxtrgeneralpuncrules
<\glsxtrdigitrules
<\glsxtrfractionrules
<\MapSymbolOrder 7 <--- custom map symbols
<\glsxtrMathItalicGreekIrules
<\glsxtrGenerallLatinIrules
+
]

An alternative to providing mapsymbols.bib is to provide a custom package just for
bib2gls’ use. For example, mapsymbols-bib2gls.sty:

% Provided for bib2gls only.

% Use \usepackage{mapsymbols} in the document.
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mapsymbols-bib2gls}
\glsxtrprovidecommand{\Harbour}{\char"2693}
\glsxtrprovidecommand{\Battlefield}{\char"2694}
\glsxtrprovidecommand{\Stadium}{\char"26BD}
\endinput

295

5.12 Sorting

and instruct bib2gls to parse it with ~—custom-packages mapsymbols-bib2gls (and use
mapsymbols.sty in the document). Remember that bib2gls isn’t a TgX engine so make
sure to only use simple commands in this file.

break-at=(option)

This option automatically implements dual-break-at={(option)} and secondary-break
~at={(option)}.

The alphabet sort options (table 5.2) typically list non-letter characters before alphabetical
characters and spaces are quite often in the ignored set. This means that the alphabet sort
options are naturally in a letter order, similar to xindy’s ord/letorder module. (This isn’t
the same as sort={letter-nocase}, which just sorts according to the Unicode value not
according to a particular alphabet.)

In order to replicate makeindex and xindy’s default word order, bib2gls splits up the
sort value at word boundaries and inserts a marker (identified by break-marker). For ex-
ample, if the sort value is “sea lion” then it’s actually converted to sea|lion| whereas “sea”
becomes sea| and “seal” becomes seal |. The default marker is | which is commonly placed
in collation rules before digits but after the ignored characters, such as spaces and hyphens.

Note that this action removes non-letters, so for example, if the sort valueis # (parameter)
then it will be converted to parameter| (hash, space and parentheses removed). If you only
want to break at spaces (optionally following a comma) use the following instead:

break-at={nonel},
sort-replace={{,? +}{|}}

You can change the construction of the break points with break-at={(option)} where
(option) may be one of:

« word: break at word boundaries (default). Note that what constitutes a word varies
according to the locale but usually anything that’s not alphanumeric will designate a
word-boundary. The characters between words are discarded. For example, the sort
value “Tom, Dick, and Harry” becomes Tom|Dick|and|Harry, which has discarded
the comma and space characters.

o character: break after each character.
« sentence: break after each sentence.

+ upper-notlower: break after any upper case character that’s not followed by a lower
case character. For example, “MathML” becomes MathM|L | and “W3C” becomesW|3C]|.

« upper-upper: break after any upper case character that’s followed by an upper case
character.

+ upper-notlower-word: first applies break-points according to upper-notlower and
then according to word.

296

5.12 Sorting

» upper-upper-word: first applies break-points according to upper-upper and then
according to word.

» none: don’t create break points. Use this option to emulate makeindex or xindy’s
letter ordering, or combine with sort-replace to insert custom break points.

This option is ignored when used with the non-alphabetic sort options. You can find the
break points in the sort field for the entry’s definition in the . glstex file (which is provided
for information rather than for use in the document). Alternatively, use the --debug switch
to show the break points in the transcript. (This will also show the collation rule.)

If you want to selectively apply break points only to certain entries, use break-at-match
or break-at-not-match.

break-marker=(marker)

This option automatically implements the dual and secondary settings dual-break-marker
={(marker)} and secondary-break-marker={(marker)}.

The break marker can be changed using break-marker={(marker)}, where (marker) is
the character to use. For example, break-marker={-} will use a hyphen. The marker may
be empty, which effectively strips the inter-word punctuation. For example, with break
-marker={}, “Tom, Dick, and Harry” becomes TomDickandHarry and “sea lion” simply be-
comes sealion. If (marker) is omitted, break-marker={} is assumed.

break-at-match=(key=value list)

This option automatically implements dual-break-at-match={{option)} and secondary
~-break-at-match={(option)}.

If you have break-at set to create break points (for example, with break-at={word})
then you can specify which entries should have break points with this option. The value
has the same syntax as match. If an entry matches the criteria, then break points are added,
otherwise no break points are added. For example, to only have break points for entries
defined with @index or @indexplural:

break-at-match={entrytype=index (plural)?}

This option has no effect with break-at={none}.

break-at-match-op=(value)

This option automatically implements dual-break-at-match-op={({option)} and secondary
-break-at-match-op={{option)}.

If the value of break-at-match contains more than one (key)=(pattern) element, the
break-at-match-op determines whether to apply a logical AND or a logical OR. The (value)
may be either and or or. The default is break-at-match-op={and}.

297

5.12 Sorting

break-at-not-match=({key=value list)

This option automatically implements dual-break-at-not-match={(option)} and secondary
~break-at-not-match={{option)}.
For example, to prevent entries defined with @symbol from having break points:

break-at-not-match={entrytype=symbol}

Like break-at-match but negates the match. This option has no effect with break-at=
{none}.

sort-number-pad=(number)

This option automatically implements the dual and secondary settings dual-sort-number
-pad={(number)}, secondary-sort-number-pad={(number)}.

If (number) is greater than 1, any integer sub-strings found in the sort value will be zero-
padded up to this value. Since the - character is often ignored by rule-based sort methods,
any signs found will be replaced with the markers given by sort-pad-plus and sort-pad
-minus, which should be chosen to ensure that negative numbers are ordered before positive
numbers (if this is desired). An unsigned number will have the sort-pad-plus marker
inserted before it. The default value is sort-number-pad={0}, which doesn’t implement
any padding.

If you use this with a locale sort method, it’s best to also set break-at={none}, as the
default word boundary break points will likely be confused by a mix of alphanumerics.

sort-pad-plus=(marker)

This option automatically implements the dual and secondary settings dual-sort-pad-plus
={(marker)}, secondary-sort-pad-plus={(marker)}.

This option only has an effect when used with sort-number-pad={(number)} where
(number) is greater than 1. Positive numbers will have their sign replaced with (marker).
The default setting is sort-pad-plus={>}.

sort-pad-minus=(marker)

This option automatically implements the dual and secondary settings dual-sort-pad-minus
={(marker)}, secondary-sort-pad-minus={(marker)}.

This option only has an effect when used with sort-number-pad={(number)} where
(number) is greater than 1. Negative numbers will have their sign replaced with (marker).
The default setting is sort-pad-plus={<}.

identical-sort-action=(value)

This option automatically implements the dual and secondary settings dual-identical
-sort-action={(value)} and secondary-identical-sort-action={(value)}.

298

5.12 Sorting

This option determines what the comparator should do if two entries at the same hierar-
chical level are considered equal. The (value) may be one of:

« none: don’t take any further action if sort values are identical;
« def if sort values are identical, order them according to definition;

« use: if sort values are identical, order them according to use in the document (order
determine by a normal record);

« id: if sort values are identical, compare the entry labels;

» original id: ifsort values are i